Równania kwadratowe

Zagadnienia dot. funkcji kwadratowej. RÓWNANIA I NIERÓWNOŚCI kwadratowe i pierwiastkowe. Układy równań stopnia 2.
Tris
Użytkownik
Użytkownik
Posty: 8
Rejestracja: 17 lip 2007, o 15:23
Płeć: Kobieta
Lokalizacja: pole truskawek
Podziękował: 5 razy

Równania kwadratowe

Post autor: Tris » 25 lip 2007, o 11:51

Zbadaj liczbę pierwiastków równania w zależności od parametru k

\(\displaystyle{ x^{2}+x+k=0}\)

Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

(Bialy)
Użytkownik
Użytkownik
Posty: 5
Rejestracja: 24 lip 2007, o 11:36
Płeć: Mężczyzna
Lokalizacja: Stąd
Pomógł: 1 raz

Równania kwadratowe

Post autor: (Bialy) » 25 lip 2007, o 11:58

Musisz policzyć deltę. Następnie korzystasz z tego, że rownanie nie ma rozwiazan rzeczywistych, gdy delta jest mniejsza od zera, ma jedno rzeczywiste rozwiazanie gdy delta jest rowna 0, oraz ma 2 rozne rzeczywoste rozwiazania, gdy delta jest wieksza od zera.
Pozdrawiam

Awatar użytkownika
Anathemed
Użytkownik
Użytkownik
Posty: 101
Rejestracja: 12 lip 2007, o 21:09
Płeć: Mężczyzna
Lokalizacja: Kraków
Pomógł: 34 razy

Równania kwadratowe

Post autor: Anathemed » 25 lip 2007, o 12:00

Zadanie można zrobić, nie używając metod rozwiązywania równania kwadratowego w taki oto prosty sposób:

Zapiszmy sobie to równanie w takiej postaci:
\(\displaystyle{ (x+ \frac{1}{2})^2 = \frac{1}{4} - k}\)

Lewa strona jest kwadratem i jest zawsze nieujemna tak więc prawa strona również musi być nieujemna, jeżeli chcemy miec jakiś pierwiastek.

I tak:

Jeżeli \(\displaystyle{ k > \frac{1}{4}}\), to nie ma żadnego pierwiastka
Jeżeli \(\displaystyle{ k = \frac{1}{4}}\), to jest jeden pierwiastek (\(\displaystyle{ x = \frac{1}{2}}\)
Jeżeli \(\displaystyle{ k < \frac{1}{4}}\), to pierwiastki są dwa ( są nimi rozwiązania równań: \(\displaystyle{ x + \frac{1}{2} = \sqrt{\frac{1}{4} - k}}\) oraz \(\displaystyle{ -(x + \frac{1}{2}) = \sqrt{\frac{1}{4} - k}}\)

Tris
Użytkownik
Użytkownik
Posty: 8
Rejestracja: 17 lip 2007, o 15:23
Płeć: Kobieta
Lokalizacja: pole truskawek
Podziękował: 5 razy

Równania kwadratowe

Post autor: Tris » 25 lip 2007, o 13:25

aha. Nie takie straszne jak myślałam Dziękuję bardzo!

ODPOWIEDZ