Wykazać nierówność dla trzech zmiennych, wiedząc, że.

Proste problemy dotyczące wzorów skróconego mnożenia, ułamków, proporcji oraz innych przekształceń.
dawido000
Użytkownik
Użytkownik
Posty: 278
Rejestracja: 17 lut 2007, o 18:48
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 42 razy

Wykazać nierówność dla trzech zmiennych, wiedząc, że.

Post autor: dawido000 » 23 lip 2007, o 20:08

Wykaż, że jeśli \(\displaystyle{ x+y+z=0}\), to \(\displaystyle{ xy+yz+zx\leqslant0}\).
Ostatnio zmieniony 31 lip 2007, o 17:18 przez dawido000, łącznie zmieniany 1 raz.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Anathemed
Użytkownik
Użytkownik
Posty: 101
Rejestracja: 12 lip 2007, o 21:09
Płeć: Mężczyzna
Lokalizacja: Kraków
Pomógł: 34 razy

Wykazać nierówność dla trzech zmiennych, wiedząc, że.

Post autor: Anathemed » 23 lip 2007, o 20:49

Ponieważ \(\displaystyle{ 0 = x + y + z}\), więc \(\displaystyle{ 0*0 = 0 = (x+y+z)^2}\)

Podstawiając za zero w naszej nierówności powyższe wyrażenie, otrzymujemy do udowodnienia taką nierówność: \(\displaystyle{ xy+yz+zx\leqslant (x+y+z)^2}\)

Teraz wymnóżmy wyrażenie \(\displaystyle{ (x+y+z)^2}\). Mamy:

\(\displaystyle{ (x+y+z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx}\)

Nasza nierwówność wygląda więc tak:
\(\displaystyle{ xy+yz+zx\leqslant x^2 + y^2 + z^2 + 2xy + 2yz + 2zx}\)
Po zredukowaniu wyrazów podobnych otrzymujemy nierówność:
\(\displaystyle{ 0\leqslant x^2 + y^2 + z^2 + xy + yz + zx}\)
Po przemnożeniu przez 2:
\(\displaystyle{ 0\leqslant 2x^2 + 2y^2 + 2z^2 + 2xy +2yz + 2zx}\)

Pogrupujmy teraz prawą stronę w ten sposób:

\(\displaystyle{ 0\leqslant (x^ 2+ 2xy + y^2) + (y^ 2+ 2yz + z^2) + (z^ 2+ 2zx + x^2)}\)

Czyli korzystając ze wzoru skróconego mnożenia:
\(\displaystyle{ 0\leqslant (x+y)^2 + (y+z)^2 + (z+x)^2}\)

A to jest prawdą. A ponieważ powyższa nierówność jest po prostu przekształconą wyjściową nierównością, więc wyjściowa nierówność jest również prawdziwa, c.b.d.o.

Mam nadzieję, że tym razem wszystko w miarę prosto i czytelnie wyjaśniłem

Awatar użytkownika
mol_ksiazkowy
Użytkownik
Użytkownik
Posty: 7094
Rejestracja: 9 maja 2006, o 12:35
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 2625 razy
Pomógł: 687 razy

Wykazać nierówność dla trzech zmiennych, wiedząc, że.

Post autor: mol_ksiazkowy » 23 lip 2007, o 22:10

\(\displaystyle{ xy+yz+zx= \frac{(x+y+z)^2 -(x^2+y^2+z^2)}{2} = -\frac{ x^2+y^2+z^2}{2} q 0}\)

ODPOWIEDZ