Strona 1 z 1

Zasada indukcji zupełnej - sumy i silnia

: 15 lis 2015, o 09:16
autor: proudPolak
Witam, uczę się zasady indukcji zupełnej, ale z tymi przykładami mam realny problem, czy ktoś ma jakąś propozycję na rozwiązanie? Serdecznie proszę o pomoc.
a) \(\displaystyle{ \forall n \ge 4; n!> 2^{n}}\)
b) \(\displaystyle{ \forall n \in N; \sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}}\)
c) \(\displaystyle{ \forall n \in N; \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + ... + \frac{1}{n(n+1)} = \frac{n}{n+1}}\)

Zasada indukcji zupełnej - sumy i silnia

: 15 lis 2015, o 09:42
autor: pyzol
\(\displaystyle{ (k+1)!=(k+1)k!>(k+1)2^k>...\\
\sum_{k=1}^{n+1} k^2=\sum_{k=1}^{n} k^2+(n+1)^2=\frac{n(n+1)(2n+1)}{6}+(n+1)^2=...}\)

W c) indukcja jest niepotrzebna, wystarczy zauważyć, że \(\displaystyle{ \frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}}\)

Zasada indukcji zupełnej - sumy i silnia

: 15 lis 2015, o 11:10
autor: proudPolak
W przypadku pierwszym na tym się zatrzymuje, nie wiem co dalej, zostaje
\(\displaystyle{ (k+1)k!> k2^{k}+2^{k}}\)

Zasada indukcji zupełnej - sumy i silnia

: 15 lis 2015, o 12:19
autor: pyzol
Przecie masz założenie, że \(\displaystyle{ k \ge 4}\), więc \(\displaystyle{ k>2}\).

Zasada indukcji zupełnej - sumy i silnia

: 15 lis 2015, o 17:11
autor: proudPolak
Nie rozumiem, nigdzie tam nie ma, że \(\displaystyle{ k>2}\), więc nie mam zbytnio jak skorzystać z tego założenia...

-- 15 lis 2015, o 18:31 --

Ktoś, coś?

Zasada indukcji zupełnej - sumy i silnia

: 15 lis 2015, o 18:49
autor: Jan Kraszewski
proudPolak pisze:Nie rozumiem, nigdzie tam nie ma, że \(\displaystyle{ k>2}\),
Jak nie ma, jak jest:

a) \(\displaystyle{ \red\forall n \ge 4;\black n!> 2^{n}}\)
proudPolak pisze:więc nie mam zbytnio jak skorzystać z tego założenia...
Tu akurat wystarczy skorzystać z tego, że \(\displaystyle{ k\ge 1}\), czyli \(\displaystyle{ k2^{k}+2^{k}\ge 2^{k}+2^{k}=2^{k+1}}\).

JK