Problem z niepewnościami pomiarowymi.
: 17 wrz 2015, o 16:08
Witam, mam problem z policzeniem niepewności pomiarowych. Jest ktoś w stanie pomóc / podpowiedzieć co dalej ?
\(\displaystyle{ m[g]}\)
\(\displaystyle{ 221,2}\)
\(\displaystyle{ 230,2}\)
\(\displaystyle{ 226,0}\)
\(\displaystyle{ 220,4}\)
\(\displaystyle{ m_{sr.} = 224,45 [g]}\)
\(\displaystyle{ \epsilon^2 =62,43}\)
\(\displaystyle{ T=21,3^\circ C}\)
\(\displaystyle{ k = 0,000123 \frac{kg}{m^2}}\)
\(\displaystyle{ A = \frac{4m(k-1)}{T^2}}\)
\(\displaystyle{ A= \frac{4m(k-1)}{T^2}= \frac{4 \cdot 224,45(0,000123 - 1)}{T^2}= \frac{897,8(-0,999877)}{21,3^2^\circ C}= \frac{-897,6895706 \frac{kg}{m^2} }{453,69^\circ C}= -1,9786408574136524939936961361282 [\frac{ \frac{kg}{m^2} }{\circ C}]}\)
\(\displaystyle{ U(A) = ?}\)
\(\displaystyle{ U_{A} = \sqrt{ \frac{62,43}{12} } = \sqrt{5,2025} = 2,2808989 [g]}\)
\(\displaystyle{ U_{B} = \sqrt{ \frac{0,1}{1,732} } = 0,0577367 [g]}\)
\(\displaystyle{ U_{C} = \sqrt{2,2808989^2 + 0,0577367^2 } = 2,3386356 [g]}\)
\(\displaystyle{ m[g]}\)
\(\displaystyle{ 221,2}\)
\(\displaystyle{ 230,2}\)
\(\displaystyle{ 226,0}\)
\(\displaystyle{ 220,4}\)
\(\displaystyle{ m_{sr.} = 224,45 [g]}\)
\(\displaystyle{ \epsilon^2 =62,43}\)
\(\displaystyle{ T=21,3^\circ C}\)
\(\displaystyle{ k = 0,000123 \frac{kg}{m^2}}\)
\(\displaystyle{ A = \frac{4m(k-1)}{T^2}}\)
\(\displaystyle{ A= \frac{4m(k-1)}{T^2}= \frac{4 \cdot 224,45(0,000123 - 1)}{T^2}= \frac{897,8(-0,999877)}{21,3^2^\circ C}= \frac{-897,6895706 \frac{kg}{m^2} }{453,69^\circ C}= -1,9786408574136524939936961361282 [\frac{ \frac{kg}{m^2} }{\circ C}]}\)
\(\displaystyle{ U(A) = ?}\)
\(\displaystyle{ U_{A} = \sqrt{ \frac{62,43}{12} } = \sqrt{5,2025} = 2,2808989 [g]}\)
\(\displaystyle{ U_{B} = \sqrt{ \frac{0,1}{1,732} } = 0,0577367 [g]}\)
\(\displaystyle{ U_{C} = \sqrt{2,2808989^2 + 0,0577367^2 } = 2,3386356 [g]}\)