Tablice statystyczne + jak z nich korzystać?

Zbiór wzorów, definicji i najczęściej poruszanych problemów z probabilistyki oraz statystyki matematycznej.
Awatar użytkownika
abrasax
Gość Specjalny
Gość Specjalny
Posty: 844
Rejestracja: 20 maja 2005, o 13:19
Płeć: Kobieta
Lokalizacja: Zabrze
Podziękował: 1 raz
Pomógł: 161 razy

Tablice statystyczne + jak z nich korzystać?

Post autor: abrasax » 28 cze 2007, o 20:32

Tablice statystyczne najczęściej wykorzystywanych rozkładów: rozkład normalny rozkład t-Studenta rozkład chi kwadrat cz. 1 oraz cz. 2 Źródło: Krysicki, Zieliński "Tablice statystyczne" Jak odczytywać wartości posługując się tablicami? przykład 1 Odczytać wartość prawdopodobieństwa dla rozkładu normalnego: \(\displaystyle{ \Phi(1,96)=?}\) rozwiązanie
  1. wiemy, że u=1,96
  2. w pierwszej kolumnie odnajdujemy wartość 1,9 - lokalizujemy wiersz, w którym znajduje się szukana wartość prawdopodobieństwa,
  3. w pierwszym wierszu odszukujemy wartość 0,06 (1,9+0,06=1,96), która wyznacza nam odpowiednią kolumnę,
  4. szukane prawdopodobieństwo odczytujemy ze środka tabeli - na przecięciu wyznaczonego wiersza i kolumny: \(\displaystyle{ \Phi}\)(1,96)=0,975002.
przykład 2 Odczytać kwantyl rozkładu normalnego: \(\displaystyle{ \Phi(u)=0,975}\) rozwiązanie
  1. wiemy, że \(\displaystyle{ \Phi(u)}\)=0,975, szukamy wartości u=?
  2. ze środka tabeli wybieramy wartość najbardziej zbliżoną do 0,975, czyli 0,975002, odszukana wartość lokalizuje konkretny wiersz i kolumnę tabeli,
  3. w pierwszej kolumnie odczytujemy wskazaną wartość u=1,9 a natomiast w pierwszym wierszu u=0,06,
  4. kwantyl ma wartość u=1,9+0,06=1,96.
Najczęściej wykorzystywane kwantyle rozkładu normalnego \(\displaystyle{ \begin{array}{c|c|c|c|c|c}\Phi(u) & 0,90 & 0,95 & 0,975 & 0,99 & 0,995 \\ \hline u & 1,28 & 1,64 & 1,96 & 2,33 & 2,58 \end{array}}\) przykład 3 Odczytać kwantyl rozkładu t Studenta: \(\displaystyle{ S(t)=0,05}\) przy 5 stopniach swobody rozwiązanie
  1. wiemy, że \(\displaystyle{ \alpha}\)=0,05 oraz r=5, szukamy wartości t=?
  2. w pierwszej kolumnie wybieramy stopnie swobody r=5,
  3. w pierwszym wierszu szukamy wartości \(\displaystyle{ \alpha}\)=0,05,
  4. kwantyl odczytujemy ze środka tabeli t=2,5706.
przykład 4 Odczytać kwantyl rozkładu \(\displaystyle{ \chi^2}\) - analogicznie, jak dla tablic t Studenta (przykład 3).
Ostatnio zmieniony 23 wrz 2008, o 00:15 przez abrasax, łącznie zmieniany 1 raz.

ODPOWIEDZ