całka
: 14 cze 2007, o 13:28
czy dobrze licze?
\(\displaystyle{ \int \frac{2^x+2^{2x}}{3^x}dx=\int \frac{2^x}{3^x}dx + t \frac {4^x}{3^x}dx=\int(\frac{2}{3})^xdx+\int(\frac{4}{3})^xdx=\frac{(\frac{2}{3})^x}{ln\frac{2}{3}}+\frac{(\frac{4}{3})^x}{ln\frac{4}{3}}+C=\frac{2^x}{3^x(ln\frac{2}{3})}+\frac{4^x}{3^x(ln\frac{4}{3})}+C}\)
\(\displaystyle{ \int \frac{2^x+2^{2x}}{3^x}dx=\int \frac{2^x}{3^x}dx + t \frac {4^x}{3^x}dx=\int(\frac{2}{3})^xdx+\int(\frac{4}{3})^xdx=\frac{(\frac{2}{3})^x}{ln\frac{2}{3}}+\frac{(\frac{4}{3})^x}{ln\frac{4}{3}}+C=\frac{2^x}{3^x(ln\frac{2}{3})}+\frac{4^x}{3^x(ln\frac{4}{3})}+C}\)