Mechanika redukcja układu sił i wyznaczanie reakcji więzów

koteczekkk
Użytkownik
Użytkownik
Posty: 15
Rejestracja: 7 gru 2014, o 17:57
Płeć: Mężczyzna
Lokalizacja: Poznań

Mechanika redukcja układu sił i wyznaczanie reakcji więzów

Post autor: koteczekkk » 7 gru 2014, o 18:11

Cześć. Mam do zrobienia pilnie na dzisiaj dwa zadania z mechaniki. Dane i polecenie w załącznikach. Błagam ratunku. Te dwa zadania są najważniejsze. Z góry dziękuję za pomoc.
http://zapodaj.net/4cfd5b0f7ef79.png.html
http://zapodaj.net/d6c3708eb51fa.png.html

Awatar użytkownika
siwymech
Użytkownik
Użytkownik
Posty: 2210
Rejestracja: 17 kwie 2012, o 14:18
Płeć: Mężczyzna
Lokalizacja: Nowy Targ
Pomógł: 523 razy

Mechanika redukcja układu sił i wyznaczanie reakcji więzów

Post autor: siwymech » 8 gru 2014, o 11:24



1.Przyjmujemy biegun redukcji w p.O- początek układu współrzędnych.
2. Wektor główny- wartość Wg znajdziemy, szukając rzutów wszystkich sił na osie układu x, y i z.
Korzystamy z tw. o sumie rzutów i wypisujemy równania;
(1) \(\displaystyle{ W _{x}=-P _{2} \cdot cos \beta cos \beta ' -P _{4} cos \alpha}\),
(2)\(\displaystyle{ W _{y}=P _{2} \cdot cos \beta \cdot sin \beta '+P _{1}}\).
(3)\(\displaystyle{ W _ {z}= P _{2} \cdot sin \beta +P _{4}sin \alpha}\)
(4) \(\displaystyle{ W= \sqrt{W ^{2} _{x}+W ^{2} _{y}+W ^{2} _{z} }}\)
2. Kierunek Wg z osiami układu x,y,z, określony przez cosinusy kątów;
(5) \(\displaystyle{ cos \alpha "=\frac{W _{x} }{W}}\),
(6) \(\displaystyle{ cos \beta "= \frac{W _{y} }{W}}\),
(7) \(\displaystyle{ cos \gamma "= \frac{W _{z} }{W}}\),
Uwagi do znalezienia rzutu siły \(\displaystyle{ }\) \(\displaystyle{ P _{2}}\)
na osie x,y,z. Rzutu dokonujemy w dwóch etapach;
I- rzutujemy siłę na płaszczyznę x,y znajdując rzut \(\displaystyle{ P' _{2}}\)
\(\displaystyle{ P' _{2}=P _{2} \cdot cos \beta}\),
Kąt \(\displaystyle{ }\) \(\displaystyle{ \beta}\) znajdujemy z trójkąta BAE
II- Rzutujemy \(\displaystyle{ }\) \(\displaystyle{ P' _{2}}\) \(\displaystyle{ }\) na osie x i y
\(\displaystyle{ P _{2x}=P _{2} \cdot cos \beta \cdot cos \beta '}\)
Kąt \(\displaystyle{ }\) \(\displaystyle{ \beta'}\) znajdujemy z trójkąta BCD
...............................................................................
3.Moment główny Mg wzgl. poszczególnych osi układu współrzędnych
/ Tw.Varignona/
(8) \(\displaystyle{ M _{gx}=P _{2} \cdot sin \beta \cdot 0,5b+P _{4} \cdot sin \alpha \cdot b}\),
(9)\(\displaystyle{ M _{gy}=-P _{2} \cdot sin \beta \cdot 0,5a-P _{4} \cdot sin \alpha \cdot a}\),
(10) \(\displaystyle{ M _{gz}=P _{2} \cdot cos \beta' \cdot b+P _{4} \cdot co \alpha \cdot b}\),
(11) \(\displaystyle{ M _{g} = \sqrt{M ^{2} _{gx}+M ^{2} _{gy}+M ^{2} _{gz} }}\)
Praktyczna uwaga do obl. M;
Jeżeli siła przecina oś, bądź jest do osi równoległa, to moment od tej siły jest równy zeru.
4.Kąt \(\displaystyle{ \phi}\) \(\displaystyle{ }\) zawarty między Wg i Mg

(12)\(\displaystyle{ cos\phi= \frac{Wgx \cdot Mgx+Wgy \cdot Mgy+Wgz \cdot Mgz}{Wg \cdot Mg}}\)
..................................................................
Przypadki redukcji/ opisane w każdym podręczniku!!!/ zależą od wartości wektora głównego Wg,wartości momentu głównego Mg oraz od wartości kąta zawartego między Mg i Wg.
..........................................
Powodzenia

daras170
Użytkownik
Użytkownik
Posty: 684
Rejestracja: 24 mar 2014, o 19:57
Płeć: Mężczyzna
Lokalizacja: Toronto
Pomógł: 73 razy

Mechanika redukcja układu sił i wyznaczanie reakcji więzów

Post autor: daras170 » 8 gru 2014, o 12:47

376732.htm ona to chciała na wczoraj

ODPOWIEDZ