Składanie i parzystość funkcji-2 zadania.

Wszelkiego rodzaju zadania nie dotyczące funkcji w działach powyżej lub wiążace więcej niż jeden typ funkcji. Ogólne własności. Równania funkcyjne.
qkiz
Użytkownik
Użytkownik
Posty: 68
Rejestracja: 21 paź 2004, o 21:50
Płeć: Mężczyzna
Lokalizacja: Bytom
Podziękował: 20 razy

Składanie i parzystość funkcji-2 zadania.

Post autor: qkiz » 28 sty 2005, o 15:25

1. Jeżeli funkcja f: R --> R jest nieparzysta to parzysta jest funkcja:
a) g(x) = (f(x))^2
b)g(x) = f(x^2)
c) g(x) = f (f(x))
2. Jeżeli f(x) = x + 1 i g(x) = sqrt(x), to
a) f (g(x)) = sqrt(x) + 1
b) g(f(x)) = sqrt(x+1)
c) g(f(x)) = x

Prosiłbym o argumentacje dlaczego tak a nie inaczej albo przynajmniej o wskazówki jak dotknąć te zadanka...

W_Zygmunt
Użytkownik
Użytkownik
Posty: 545
Rejestracja: 1 wrz 2004, o 22:47
Płeć: Mężczyzna
Lokalizacja: Kraków
Pomógł: 53 razy

Składanie i parzystość funkcji-2 zadania.

Post autor: W_Zygmunt » 29 sty 2005, o 20:20

Ad 1a.
Aby g(x) była parzysta muszą być spełnione warunki:
Po pierwsze dla każdego x
\(\displaystyle{ \ \,x Dg\, \, -x Dg}\)
Aby to wykazać, wystarczy zuważyć, że f(x) ma tę własność, a podnoszenie do kwadratu jest zawsze wykonalne.
Po drugie każdego x
\(\displaystyle{ \ \, g(-x)\,=\,g(x)}\)
Ale
\(\displaystyle{ \ g(-x)= (f(-x))^2 = (-f(x))^2= (-1)^2*(f(x))^2=(f(x))^2=g(x)}\)
Zadania b i c rozwiązujemy w podobny sposób.

Ad 2a.
Zapiszmy to tak
f(u) = u + 1
u= g(x) = sqrt(x)
Ad 2b.
g(u)=sqrt(u)
u=f(x)=x+1
Ad 2c. Tu na pewno się nie zgadza.

ODPOWIEDZ