Zbadaj istnienie granic
: 9 lip 2014, o 23:10
Proszę
1. \(\displaystyle{ \lim_{(x, y) \to \left( 0, 0 \right) }\frac {x^{2}y^{2}}{x^{4}+y^{4}}}\)
2. \(\displaystyle{ \lim_{ \left( x, y \right) \to \left( \pi,0 \right) }\frac {\sin ^{2}x}{y^{2}}}\)
3. \(\displaystyle{ \lim_{ \left( x, y \right) \to \left( 1, 1 \right) }\frac {x+y-2}{x^{2}+y^{2}-2}}\)
4. \(\displaystyle{ \lim_{ \left( x, y \right) \to \left( 1, 2 \right) }\frac {x^{2}y^{2}-4x^{2}-y^{2}+4}{xy-2x-y+2}}\)
5. \(\displaystyle{ \lim_{ \left( x, y \right) \to \left( 0, 0 \right) } \left( x^{2}+y^{2} \right) \sin \frac {1}{xy}}\)
Dziękuję
1. \(\displaystyle{ \lim_{(x, y) \to \left( 0, 0 \right) }\frac {x^{2}y^{2}}{x^{4}+y^{4}}}\)
2. \(\displaystyle{ \lim_{ \left( x, y \right) \to \left( \pi,0 \right) }\frac {\sin ^{2}x}{y^{2}}}\)
3. \(\displaystyle{ \lim_{ \left( x, y \right) \to \left( 1, 1 \right) }\frac {x+y-2}{x^{2}+y^{2}-2}}\)
4. \(\displaystyle{ \lim_{ \left( x, y \right) \to \left( 1, 2 \right) }\frac {x^{2}y^{2}-4x^{2}-y^{2}+4}{xy-2x-y+2}}\)
5. \(\displaystyle{ \lim_{ \left( x, y \right) \to \left( 0, 0 \right) } \left( x^{2}+y^{2} \right) \sin \frac {1}{xy}}\)
Dziękuję