Metoda przewidywań
: 7 lip 2014, o 00:56
Proszę o pomoc w rozwiązaniu tego równania:
\(\displaystyle{ y^{''}+y=\sin5x}\)
Robię tak:
\(\displaystyle{ y^{''}+y=0}\)
mamy:
\(\displaystyle{ r=i}\) oraz \(\displaystyle{ r=-i}\)
\(\displaystyle{ y=C_{1}\cos x+C_{2} \sin x}\)
przewiduję:
\(\displaystyle{ y^{*}=A\cos5x+B\sin5x}\) i dalej jak liczę pochodne i podstawiam to tego pierwszego równania to nie wychodzi.
\(\displaystyle{ y^{''}+y=\sin5x}\)
Robię tak:
\(\displaystyle{ y^{''}+y=0}\)
mamy:
\(\displaystyle{ r=i}\) oraz \(\displaystyle{ r=-i}\)
\(\displaystyle{ y=C_{1}\cos x+C_{2} \sin x}\)
przewiduję:
\(\displaystyle{ y^{*}=A\cos5x+B\sin5x}\) i dalej jak liczę pochodne i podstawiam to tego pierwszego równania to nie wychodzi.