Sprawdzic Liniowosc
: 28 sty 2014, o 12:39
Witam mam zadanie:
\(\displaystyle{ \varphi R^{3} : R^{3}, \varphi(x,y,z)=(2x - y, x+y +2z, 3y -2z)}\)
Czy to zadanie można rozwiązać w ten sposób:
pierw warunki na liniowość:
1)\(\displaystyle{ \varphi (x+y)= \varphi(x)+ \varphi(y)}\)
2)\(\displaystyle{ \varphi (ax)= a \varphi (x)}\)
teraz tak:
1)
\(\displaystyle{ f(x_{1}+x_{2}+x_{3},y_{1}+y_{2}+y_{3},z_{1}+z_{2}+z_{3}) = (2x_{1}+2x_{2}-y_{1}-y_{2},x_{1}+x_{2}+y_{1}+y_{2}+2z_{1}+2z_{2},3y_{1}+3y_{2}-2z_{1}-2z_{2})= (2x_{1}-y_{1},x_{1}+y_{1}+2z_{1},3y_{1}-2z_{1}) + (2x_{2}-y_{2},x_{2}+y_{2}+2z_{2},3y_{2}-2z_{2})=}\)
Dalej nie wiem jak dokończyć...
2)
\(\displaystyle{ \varphi(ax,ay,az)=(2ax-ay,ax+ay+a2z,a3y-a2z)=a(2x-y,x+y+2z,3y-2z) = \\ = a \varphi (x,y,z)}\)
Proszę o sprawdzenie i pomoc.-- 28 sty 2014, o 20:38 --up
\(\displaystyle{ \varphi R^{3} : R^{3}, \varphi(x,y,z)=(2x - y, x+y +2z, 3y -2z)}\)
Czy to zadanie można rozwiązać w ten sposób:
pierw warunki na liniowość:
1)\(\displaystyle{ \varphi (x+y)= \varphi(x)+ \varphi(y)}\)
2)\(\displaystyle{ \varphi (ax)= a \varphi (x)}\)
teraz tak:
1)
\(\displaystyle{ f(x_{1}+x_{2}+x_{3},y_{1}+y_{2}+y_{3},z_{1}+z_{2}+z_{3}) = (2x_{1}+2x_{2}-y_{1}-y_{2},x_{1}+x_{2}+y_{1}+y_{2}+2z_{1}+2z_{2},3y_{1}+3y_{2}-2z_{1}-2z_{2})= (2x_{1}-y_{1},x_{1}+y_{1}+2z_{1},3y_{1}-2z_{1}) + (2x_{2}-y_{2},x_{2}+y_{2}+2z_{2},3y_{2}-2z_{2})=}\)
Dalej nie wiem jak dokończyć...
2)
\(\displaystyle{ \varphi(ax,ay,az)=(2ax-ay,ax+ay+a2z,a3y-a2z)=a(2x-y,x+y+2z,3y-2z) = \\ = a \varphi (x,y,z)}\)
Proszę o sprawdzenie i pomoc.-- 28 sty 2014, o 20:38 --up