Strona 1 z 1

Szeregi - Kryterium porównawcze

: 30 lis 2013, o 20:30
autor: olaaa08
zbadaj zbieżność szeregu na postawie kryterium porównawczego

1. \(\displaystyle{ \sum_{n=1}^{ \infty } \frac{\ln n}{n \sqrt{n} }}\)
2. \(\displaystyle{ \sum_{n=1}^{ \infty } \frac{\arctan n}{n+ \sqrt{n^3} }}\)

odp. 1. zbieżny 2. zbieżny

Szeregi - Kryterium porównawcze

: 30 lis 2013, o 20:42
autor: alfgordon
1) \(\displaystyle{ \ln n \le \sqrt[4]{n}}\)
2)\(\displaystyle{ \arctan n \le \frac{\pi}{2}}\)

Szeregi - Kryterium porównawcze

: 30 lis 2013, o 22:33
autor: olaaa08
a gdzie znika mianownik ??

Szeregi - Kryterium porównawcze

: 30 lis 2013, o 22:36
autor: qwe771
on oszacował tylko liczniki, mianownik zostawiasz taki jak jest, to wystarcza do rozwiazania zadania