Podać przykład przestrzeni unitarnej X...

Analiza funkcjonalna, operatory liniowe. Analiza na rozmaitościach. Inne zagadnienia analizy wyższej
jadzia18811
Użytkownik
Użytkownik
Posty: 69
Rejestracja: 30 lis 2013, o 13:14
Płeć: Kobieta
Lokalizacja: Kraków
Podziękował: 5 razy

Podać przykład przestrzeni unitarnej X...

Post autor: jadzia18811 » 30 lis 2013, o 13:25

Podać przykład przestrzeni unitarnej X oraz jej domkniętej podprzestrzeni Y takiej, że
\(\displaystyle{ Y\oplus Y^{\perp} \neq X}\)

Proszę o pomoc i z góry za nią dziękuję

brzoskwinka1

Podać przykład przestrzeni unitarnej X...

Post autor: brzoskwinka1 » 30 lis 2013, o 13:53

Niech \(\displaystyle{ X}\) będzie przestrzenią unitarną która nie jest przestrzenią Hilberta. Istnieje wówczas ciągły i liniowy funkcjonał \(\displaystyle{ f:X \rightarrow \mathbb{R}}\) taki, że \(\displaystyle{ f(u)}\) nie jest p ostaci \(\displaystyle{ \left< u, x\right>}\) dla żadnego \(\displaystyle{ x\in X .}\)
Niech \(\displaystyle{ Y=\mbox{ Ker}f}\) i niech \(\displaystyle{ x\perp Y .}\) Twierdzimy, że \(\displaystyle{ x=0 .}\) Istotnie gdyby \(\displaystyle{ x \neq 0 ,}\) to dla funkcjonału \(\displaystyle{ \varphi (u) =\left< u, x\right>}\) zachodziłą by implikacja
\(\displaystyle{ \forall_{u\in X} (f(u) =0 \Rightarrow \varphi (u) =0)}\)
Weźmy dowolny \(\displaystyle{ u\in X}\) tali, że \(\displaystyle{ f(u) \neq 0}\) oraz \(\displaystyle{ v\in X}\) wówczas \(\displaystyle{ v-\frac{f(v)}{f(u)} u\in \mbox{ Ker}f ,}\) więc
\(\displaystyle{ f(v) =\frac{f(u)}{\varphi (u)}\cdot \varphi (v) .}\)
Sprzeczność.

jadzia18811
Użytkownik
Użytkownik
Posty: 69
Rejestracja: 30 lis 2013, o 13:14
Płeć: Kobieta
Lokalizacja: Kraków
Podziękował: 5 razy

Podać przykład przestrzeni unitarnej X...

Post autor: jadzia18811 » 30 lis 2013, o 14:04

Tylko, że ja miałam podać przykład przestrzeni unitarnej i jej domkniętej podprzestrzeni...

Nie bardzo rozumiem to co napisała brzoskwinka1

Awatar użytkownika
Spektralny
Korepetytor
Korepetytor
Posty: 3964
Rejestracja: 17 cze 2011, o 21:04
Płeć: Mężczyzna
Lokalizacja: Praga, Dąbrowa Górnicza, Kraków
Podziękował: 9 razy
Pomógł: 926 razy

Podać przykład przestrzeni unitarnej X...

Post autor: Spektralny » 1 gru 2013, o 12:41

jadzia18811 pisze:Tylko, że ja miałam podać przykład przestrzeni unitarnej i jej domkniętej podprzestrzeni...

Nie bardzo rozumiem to co napisała brzoskwinka1
Ano podała Ci przykład ogólny, gdzie za \(\displaystyle{ X}\) możesz sobie podstawić cokolwiek niezupełnego. [/latex]

jadzia18811
Użytkownik
Użytkownik
Posty: 69
Rejestracja: 30 lis 2013, o 13:14
Płeć: Kobieta
Lokalizacja: Kraków
Podziękował: 5 razy

Podać przykład przestrzeni unitarnej X...

Post autor: jadzia18811 » 1 gru 2013, o 13:09

aha...
nie zaczaiłam
to tylko jeszcze jedno pytanie- czemu brzoskwinka doszła do sprzeczności? To jakiś dowód tego czy jak?-- 2 gru 2013, o 16:36 --rozwiązanie prawie zostało zaakceptowane przez prowadzącego, podoba mu się pomysł, więc bardzo dziękuję

piszę prawie, bo poprosił o wyjaśnienie dlaczego istnieje ciągły i liniowy funkcjonał, a ja zgłupiałam.
Proszę o pomoc raz jeszcze.
brzoskwinka1 pisze:Istnieje wówczas ciągły i liniowy funkcjonał \(\displaystyle{ f:X \rightarrow \mathbb{R}}\) taki, że \(\displaystyle{ f(u)}\) nie jest p ostaci \(\displaystyle{ \left< u, x\right>}\) dla żadnego \(\displaystyle{ x\in X .}\)
Oprócz istnienia tego funkcjonału zwrócił mi uwagę, że nie rozumie tej ostatniej równości:
brzoskwinka1 pisze:więc
\(\displaystyle{ f(v) =\frac{f(u)}{\varphi (u)}\cdot \varphi (v) .}\)
Sprzeczność.
Proszę o jakieś wyjaśnienie, choć nie ukrywam, że znacznie bardziej zależy mi na tym wcześniejszym problemie- istnienia funkcjonału.

Awatar użytkownika
Spektralny
Korepetytor
Korepetytor
Posty: 3964
Rejestracja: 17 cze 2011, o 21:04
Płeć: Mężczyzna
Lokalizacja: Praga, Dąbrowa Górnicza, Kraków
Podziękował: 9 razy
Pomógł: 926 razy

Podać przykład przestrzeni unitarnej X...

Post autor: Spektralny » 4 gru 2013, o 17:49

jadzia18811 pisze:Proszę o pomoc raz jeszcze.
brzoskwinka1 pisze:Istnieje wówczas ciągły i liniowy funkcjonał \(\displaystyle{ f:X \rightarrow \mathbb{R}}\) taki, że \(\displaystyle{ f(u)}\) nie jest p ostaci \(\displaystyle{ \left< u, x\right>}\) dla żadnego \(\displaystyle{ x\in X .}\)
Twierdzenie Riesza o reprezentacji funkcjonałów charakteryzuje przestrzenie Hilberta. Dokładniej, przestrzeń unitarna \(\displaystyle{ X}\) jest przestrzenią Hilberta (jest zupełna) wtedy i tylko wtedy, gdy każdy ciągły funkcjonał liniowy na \(\displaystyle{ X}\) jest takiej postaci. Ponieważ w Twoim przypadku \(\displaystyle{ X}\) jest niezupełna, istnieje funkcjonał, który nie jest tej postaci.
jadzia18811 pisze:Oprócz istnienia tego funkcjonału zwrócił mi uwagę, że nie rozumie tej ostatniej równości:
brzoskwinka1 pisze:więc
\(\displaystyle{ f(v) =\frac{f(u)}{\varphi (u)}\cdot \varphi (v) .}\)
Sprzeczność.
Proszę o jakieś wyjaśnienie, choć nie ukrywam, że znacznie bardziej zależy mi na tym wcześniejszym problemie- istnienia funkcjonału.
Element \(\displaystyle{ v- \frac{f(v)}{f(u)}u}\) należy do jądra \(\displaystyle{ f}\), tzn.

\(\displaystyle{ f(v- \frac{f(v)}{f(u)}u)=0.}\)

Użyj liniowości \(\displaystyle{ f}\).

Everard
Użytkownik
Użytkownik
Posty: 166
Rejestracja: 11 lip 2007, o 22:59
Płeć: Mężczyzna
Lokalizacja: Bytom
Pomógł: 49 razy

Podać przykład przestrzeni unitarnej X...

Post autor: Everard » 4 gru 2013, o 17:55

... po czym faktu, że skoro ten element należy do jądra \(\displaystyle{ f}\), to należy też do jądra \(\displaystyle{ \varphi}\).

Sprzeczność polega na tym, że założyliśmy że \(\displaystyle{ f}\) nie jest postaci \(\displaystyle{ \langle u, x \rangle}\), po czym otrzymaliśmy że jest on wielokrotnością funkcjonału o tej postaci (a oczywiście rodzina funkcjonałów tej postaci jest 'domknięta' ze względu na mnożenie przez skalary).

To rozumowanie rozwiązuje Twój problem, bowiem nasz funkcjonał \(\displaystyle{ f}\) nie jest zerowy - w szczególności \(\displaystyle{ Y=Ker f\neq X}\) - ale \(\displaystyle{ Y^\perp=0}\), więc \(\displaystyle{ Y\oplus Y^\perp=Y\neq X}\).

Jeżeli cała ta zabawa jest dla Ciebie trochę zbyt abstrakcyjna, weź sobie przestrzeń \(\displaystyle{ c_{00}}\) z normą \(\displaystyle{ \ell^2}\), rozważ funkcjonał \(\displaystyle{ f((x_n))=\sum_{k=1}^\infty \frac{x_k}k}\) i wykaż, że jeśli \(\displaystyle{ Y=Ker f}\) to masz to czego potrzebujesz w zadaniu - jest to po prostu ukonkretyzowanie ogólnego algorytmu wskazanego przez brzoskwinkę.

jadzia18811
Użytkownik
Użytkownik
Posty: 69
Rejestracja: 30 lis 2013, o 13:14
Płeć: Kobieta
Lokalizacja: Kraków
Podziękował: 5 razy

Podać przykład przestrzeni unitarnej X...

Post autor: jadzia18811 » 4 gru 2013, o 22:51

Baaardzo, bardzo dziękuję

wasza pomoc powoduje, że mogę iść w końcu spać wcześniej, bo nic nie muszę robić.

ODPOWIEDZ