Podane funkcje wymierne rozłożyć na rzeczywist ułamki proste

Od funkcji homograficznych do bardziej skomplikowanych ilorazów wielomianów. Własności. RÓWNANIA I NIERÓWNOŚCI.
ZaKooN
Użytkownik
Użytkownik
Posty: 95
Rejestracja: 27 paź 2013, o 10:36
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 24 razy

Podane funkcje wymierne rozłożyć na rzeczywist ułamki proste

Post autor: ZaKooN » 6 lis 2013, o 23:47

b) \(\displaystyle{ \frac{x+9}{x(x+3)^2} = \frac{A}{x} + \frac{B}{(x+3)} + \frac{C}{(x+3)^2}}\)

\(\displaystyle{ A=\frac{1}{3}}\)
\(\displaystyle{ B=-\frac{1}{3}}\)
\(\displaystyle{ C=-1}\)

dobrze to jest?

c) \(\displaystyle{ \frac{3x^2+4x+3}{x^3-x^2+4x-4}}\)
Ostatnio zmieniony 7 lis 2013, o 00:29 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Temat umieszczony w złym dziale.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

vpprof
Użytkownik
Użytkownik
Posty: 460
Rejestracja: 11 paź 2012, o 11:20
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 20 razy
Pomógł: 62 razy

Podane funkcje wymierne rozłożyć na rzeczywist ułamki proste

Post autor: vpprof » 7 lis 2013, o 00:17

ZaKooN pisze:b) \(\displaystyle{ \frac{x+9}{x(x+3)^2} = \frac{A}{x} + \frac{B}{(x+3)} + \frac{C}{(x+3)^2}}\)

\(\displaystyle{ A=\frac{1}{3}}\)
\(\displaystyle{ B=-\frac{1}{3}}\)
\(\displaystyle{ C=-1}\)

dobrze to jest?
Nie, w liczniku wychodzi \(\displaystyle{ 3}\) zamiast \(\displaystyle{ x+9}\). Poprawnie jest \(\displaystyle{ \begin{cases} A=1 \\ B=-1 \\ C=-2\end{cases}}\). Pokaż jak liczysz.

ZaKooN
Użytkownik
Użytkownik
Posty: 95
Rejestracja: 27 paź 2013, o 10:36
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 24 razy

Podane funkcje wymierne rozłożyć na rzeczywist ułamki proste

Post autor: ZaKooN » 7 lis 2013, o 00:33

Dobra już udało mi się znaleźć błąd.

Jakie są sposoby na rozwiązywanie takich zadań?-- 7 lis 2013, o 10:51 --Dobre są te wyniki dla drugiego przykladu?

A = 2
B = -2
C = 2

vpprof
Użytkownik
Użytkownik
Posty: 460
Rejestracja: 11 paź 2012, o 11:20
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 20 razy
Pomógł: 62 razy

Podane funkcje wymierne rozłożyć na rzeczywist ułamki proste

Post autor: vpprof » 7 lis 2013, o 22:05

[quote="ZaKooN"]Dobra już udało mi się znaleźć błąd.

Jakie są sposoby na rozwiązywanie takich zadań?[/quote]
Najpewniejszy jest sposób, o którym napisałeś, tylko ja już wczoraj nie miałem czasu żeby odpisać, czyli sprowadzić ułamki proste do wspólnego mianownika i porównać licznik prawej strony z licznikiem lewej strony i rozwiązać układ równań. Są jeszcze skrótowe metody, np. Heaviside'a ale one nie działają dla wszystkich możliwych wielomianów.

[quote="ZaKooN"]-- 7 lis 2013, o 10:51 --

Dobre są te wyniki dla drugiego przykladu?

A = 2
B = -2
C = 2[/quote]
W drugim przykładzie trzeba przede wszystkim rozłożyć równanie trzeciego stopnia na prostsze składniki, żeby wiedzieć, jakie będą mianowniki ułamków prostych. Tak się składa, że \(\displaystyle{ x^3-x^2+4x-4=\left( x-1\right) \left( x^2+4\right)}\) (że jednym z pierwiastków jest \(\displaystyle{ 1}\), widać „gołym okiem”), czyli będziemy szukali takiego rozkładu \(\displaystyle{ \frac{3x^2+4x+3}{x^3-x^2+4x-4}= \frac{A}{x-1} + \frac{Bx+C}{x^2+4}}\). W tym przypadku postępujemy analogicznie co w poprzednim i otrzymujemy \(\displaystyle{ \begin{cases} A=2 \\ B=1 \\ C=5 \end{cases}}\).

ODPOWIEDZ