Strona 1 z 1
Obliczyć prawdopodobieństwo
: 27 paź 2013, o 11:57
autor: luki1992
Witam, mam problem z dwoma zadaniami z prawdopodobieństwa, a bardzo chciałbym je zrozumieć, dlatego proszę o pomoc w rozwiązaniu go:
1. Wędkarz ma \(\displaystyle{ 3}\) rodzaje przynęty. Prawdopodobieństwo, że złowi rybę na pierwszą przynętę jest równe \(\displaystyle{ 0,5}\), na drugą \(\displaystyle{ 0,75}\), a na trzecią \(\displaystyle{ \frac{2}{3}}\). Jakie jest prawdopodobieństwo, że złowi rybę, jeżeli założył na haczyk jedną z tych przynęt w sposób przypadkowy?
2. Po szczepieniu wynik dodatni występuje u \(\displaystyle{ 75\%}\) osób. Zaszczepiono \(\displaystyle{ 6}\) osób. Jakie jest prawdopodobieństwo, że dokładnie u trzech z nich wystąpi wynik dodatni?
Będę wdzięczny za pomoc
Obliczyć prawdopodobieństwo
: 27 paź 2013, o 12:05
autor: lukaszm89
1)
ZE wzoru na pstwo całkowite
2)Schemat Bernoulliego
Obliczyć prawdopodobieństwo
: 27 paź 2013, o 12:12
autor: luki1992
Co do 1 to domyślam się, że z prawd. całkowitego, ale suma tych zdarzeń jest większa od 1. Próbowałem to rozpisać tak, że zsumowałem zdarzenia: wybierze 1, 2 nie, 3 nie + 1 nie, 2 wybierze, 3 nie + 1 nie, 2 nie, 3 wybierze, ale wychodzi nie taki wynik jaki ma wyjść.
Obliczyć prawdopodobieństwo
: 27 paź 2013, o 12:57
autor: 93Michu93
W pierwszym prawdopodobieństwo całkowite:
\(\displaystyle{ P\left( A\right) = 0,5\cdot 0,33 + 0,75\cdot 0,33 + 0,66\cdot 0,33}\)
Założenie haczyka jest przypadkowe więc \(\displaystyle{ \frac{1}{3}}\) na każdą wędkę.
Obliczyć prawdopodobieństwo
: 27 paź 2013, o 22:49
autor: luki1992
Niestety chyba nie do końca, bo wynik ma wyjść \(\displaystyle{ 0,885}\), a w Twoim rozwiązaniu wychodzi dużo mniej.
Obliczyć prawdopodobieństwo
: 28 paź 2013, o 16:10
autor: 93Michu93
Intuicyjnie wynik \(\displaystyle{ 0,885}\) wygląda słabo. Prawdopodobieństwo złapania ryby przy "najlepszej" przynęcie to tylko \(\displaystyle{ 0,75}\) , a więc mniej od podanego przez Ciebie wyniku. Jesteś pewien, że podałeś dobrą odpowiedź?
Obliczyć prawdopodobieństwo
: 28 paź 2013, o 17:49
autor: luki1992
Właśnie też ta odpowiedź wydawała mi się dziwna, generalnie zrobiłem ok. 50 zadań i parę razy dałbym sobie rękę uciąć, że jest inny wynik, więc całkiem możliwe, że Twój jest poprawny. Dzięki za pomoc
A do 2 masz może jakiś pomysł? Bo ja robiłem to tak, że liczyłem normalnie kombinacje, tak, że losujemy te 3 osoby z 6, ale w pojawią mi się wartości ułamkowe, bo 75% z 6 to 4,5, więc próbowałem to rozszerzyć na 12 osób, ale dalej mi to nie wychodzi.
Obliczyć prawdopodobieństwo
: 28 paź 2013, o 18:23
autor: 93Michu93
Jeżeli liczyć ze schematu Bernoulliego to wyglądało by to tak:
\(\displaystyle{ {6\choose 3} \cdot 0,75^{3} \cdot 0,25^{3}}\)
nie jestem tego pewien, musisz zapytać kogoś innego jeszcze