Strona 1 z 1

sprawdzenie dowodu z liczb zespolonych (dol topicu)

: 10 paź 2013, o 22:14
autor: MatmaQ
Generalnie nie mam
a) bladego pojęcia, czy tu nie ma przypadkiem jakiegoś missclicka;
b) bladego pojęcia, z której strony to ugryźć, mimo, że póki co powinniśmy siedzieć w aksjomato-podobnych rzeczach

\(\displaystyle{ \sum_{i=0}^{m} z^{i} = \frac{ z^{m+1}-1 }{z-1}}\).
Edit:A, oczywiście zety to liczby zespolone.

Proszę o jakieś wsparcie, wskazówkę, wskazanie błędu w druku, cokolwiek, bym mógł zasnąć spokojnie

Dowód z potęgami liczb zespolonych,kompletnie niezależnych(?

: 10 paź 2013, o 22:17
autor: yorgin
W mianowniku powinno być \(\displaystyle{ z-1}\).

Dowód z potęgami liczb zespolonych,kompletnie niezależnych(?

: 10 paź 2013, o 22:19
autor: MatmaQ
Fakt, to z kolei mój missclick.
Chodzi mi raczej o lewą stronę równania, nie widzę jak to się łączy w całość, skoro \(\displaystyle{ n}\) może być dowolne.

Dowód z potęgami liczb zespolonych,kompletnie niezależnych(?

: 10 paź 2013, o 22:26
autor: yorgin
A, i tu kolejny błąd. Wykładnikiem powinno być \(\displaystyle{ i}\) albo alternatywnie zakres sumowania powinien być od \(\displaystyle{ n=0}\).

Dowód z potęgami liczb zespolonych,kompletnie niezależnych(?

: 10 paź 2013, o 22:27
autor: MatmaQ
Ok, spróbuję coś z tym zrobić samodzielnie.
Jeśli będę miał problem z kategorii WTF, zbumpuję temat.

-- 10 paź 2013, o 22:45 --

Proszę o sprawdzenie, nie jestem pewien, czy dobrze to zrobiłem, nie wykorzystując w ogóle właściwości liczb zespolonych.

\(\displaystyle{ \sum_{i=0}^{m} z^{i} = \frac{ z^{m+1}-1 }{z-1}, z \neq 1}\).

będzie moim założeniem indukcyjnym.

Wtedy równość w kroku indukcyjnym wygląda tak:
\(\displaystyle{ \sum_{i=0}^{m+1} z^{i} = \frac{ z^{m+2}-1 }{z-1},}\).

A to nic innego, jak (z założenia indukcyjnego):

\(\displaystyle{ \frac{ z^{m+1}-1 }{z-1}+ z^{m+1} = \frac{ z^{m+2}-1 }{z-1}}\)

Więc, po wrzuceniu środkowej zetki do licznika LHSu i obustronnego wymnożenia przez wspólny teraz mianownik mam

\(\displaystyle{ z^{m+1}-1+ z^{m+1}*(z-1) = z^{m+2}-1}\)

co się za chwilkę ładnie zeruje i wychodzi w ten sposób LHS=RHS.-- 10 paź 2013, o 23:22 --bump?