Strona 1 z 1

Jak rozwiązać całke....

: 1 wrz 2013, o 18:59
autor: infeq
Witam. Jak rozwiązać taką całkę?

\(\displaystyle{ \int_{}^{} r ^{2} \cdot \frac{a}{ \sqrt{a ^{2} - r ^{2} } } dr}\) (\(\displaystyle{ a}\) to pewna stała)

Jak rozwiązać całke....

: 1 wrz 2013, o 19:15
autor: yorgin
\(\displaystyle{ \ldots =a\int r\cdot \frac{r}{\sqrt{a^2-r^2}}dr}\)

i dalej przez części.

Jak rozwiązać całke....

: 1 wrz 2013, o 19:22
autor: infeq
\(\displaystyle{ u=r}\)______________________________\(\displaystyle{ v'=\frac{r}{ \sqrt{a ^{2}-r ^{2} } }}\)

\(\displaystyle{ u'=1}\)_____________________________\(\displaystyle{ v=\sqrt{a^{2} -r ^{2} }}\)

to teraz jest całka do policzenia z \(\displaystyle{ \int_{}^{} \sqrt{a^{2} -r ^{2} }}\) \(\displaystyle{ dr}\) jak to zrobić?

Jak rozwiązać całke....

: 1 wrz 2013, o 19:32
autor: yorgin
Są trzy drogi:

1. Niektórzy znają tę całkę na pamięć. Nie polecam.

2. Można zrobić podstawienie \(\displaystyle{ r=a\sin t}\).

3. Można wrócić do samego początku i zastosować współczynniki nieoznaczone.

\(\displaystyle{ \int\frac{r^2}{\sqrt{a^2-r^2}}dr=(Ar+B)\sqrt{a^2-r^2}+K\int\frac{dr}{\sqrt{a^2-r^2}}}\)

Ostatnia całka to prawie pochodna arcus sinusa.