Podzielność przez 3

Podzielność. Reszty z dzielenia. Kongruencje. Systemy pozycyjne. Równania diofantyczne. Liczby pierwsze i względnie pierwsze. NWW i NWD.
nogiln
Użytkownik
Użytkownik
Posty: 891
Rejestracja: 17 mar 2008, o 17:27
Płeć: Mężczyzna
Lokalizacja: Mysłaków
Podziękował: 190 razy
Pomógł: 4 razy

Podzielność przez 3

Post autor: nogiln » 22 sie 2013, o 16:14

Wykaż, że jeżeli \(\displaystyle{ n \in N \ i \ n}\) nie jest podzielne przez \(\displaystyle{ 3}\), to \(\displaystyle{ n^{2}+2}\) jest podzielne przez \(\displaystyle{ 3}\)

Wiem , że największą resztą jaka może wystąpić po podzieleniu przez 3 wynosi 2, ale nie wiem jak to wykażać
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

loitzl9006
Moderator
Moderator
Posty: 3045
Rejestracja: 21 maja 2009, o 19:08
Płeć: Mężczyzna
Lokalizacja: Starachowice
Podziękował: 26 razy
Pomógł: 816 razy

Podzielność przez 3

Post autor: loitzl9006 » 22 sie 2013, o 16:20

Z tego że \(\displaystyle{ n}\) nie jest podzielne przez \(\displaystyle{ 3}\) wynika że liczba \(\displaystyle{ n}\) przy dzieleniu przez trzy daje resztę jeden - czyli jest postaci \(\displaystyle{ 3k+1}\) dla dowolnego \(\displaystyle{ k}\) naturalnego; bądź daje resztę dwa - czyli \(\displaystyle{ 3k+2}\).

Zadanie sprowadza się do wykazania, że liczby \(\displaystyle{ (3k+1)^2+2}\) oraz \(\displaystyle{ (3k+2)^2+2}\) są podzielne przez \(\displaystyle{ 3}\) a to chyba nie jest trudne.

Awatar użytkownika
Gouranga
Użytkownik
Użytkownik
Posty: 1454
Rejestracja: 16 maja 2013, o 17:56
Płeć: Mężczyzna
Lokalizacja: Trójmiasto
Podziękował: 11 razy
Pomógł: 220 razy

Podzielność przez 3

Post autor: Gouranga » 22 sie 2013, o 16:23

jeżeli \(\displaystyle{ n}\) nie jest podzielne przez \(\displaystyle{ 3}\) to
\(\displaystyle{ n = 3k+1 \vee n = 3k+2, k\in \mathbb{N}\\ \\ \left(3k+1\right)^2 + 2 = 9k^2 + 6k + 3 = 3\left(3k^2 + 2k + 1\right)\\ \\ \left(3k+2\right)^2 + 2 = 9k^2 + 12k + 6 = 3\left(3k^2 + 4k + 2\right)}\)

ODPOWIEDZ