Strona 1 z 1

Standaryzowany rozkład normalny - gęstość zmiennych losowych

: 28 cze 2013, o 18:34
autor: patryk007
Zmienne losowe \(\displaystyle{ X}\) i \(\displaystyle{ Y}\) są niezależne o jednakowym rozkładzie normalnym \(\displaystyle{ \mathcal{N}(1,1)}\). Niech \(\displaystyle{ U=2X-Y}\), a \(\displaystyle{ V=X-2Y}\). Wyznaczyć gęstość zmiennych losowych \(\displaystyle{ U}\) i \(\displaystyle{ V}\) oraz współczynnik korelacji \(\displaystyle{ p_{UV}}\).

Nie wiem jak się za to zabrać. Po prostu. Proszę o pomoc.

Standaryzowany rozkład normalny - gęstość zmiennych losowych

: 28 cze 2013, o 19:22
autor: szw1710
Współczynnik korelacji to proste przekształcenia algebraiczne oparte na liniowości wartości oczekiwanej i niezależności. Wymnóż nawiasy i policz.

Standaryzowany rozkład normalny - gęstość zmiennych losowych

: 28 cze 2013, o 21:14
autor: robertm19
\(\displaystyle{ \Cov(U,V)=Cov(2X-Y,X-2Y)=Cov(2X,X-2Y)-Cov(Y,X-2Y)=2Cov(X,X)-4Cov(X,Y)-Cov(X,Y)+2Cov(Y,Y)}\), wszystko wynika z liniowości kowariancji.

Standaryzowany rozkład normalny - gęstość zmiennych losowych

: 29 cze 2013, o 01:34
autor: patryk007
OK. Zrobiłem jak zasugerował szw1710. Po strasznie uciążliwych i względnie długich obliczeniach wyszło, że korelacja wynosi w tym przypadku \(\displaystyle{ 0,8}\).

Współczynnik korelacji zmiennych losowych \(\displaystyle{ U,\ V}\) to \(\displaystyle{ \rho (U,V) = \frac{Cov(U,V)}{\sigma_{U} \cdot \sigma_{V}}=\frac{4}{5}}\) (rozkład obu zmiennych losowych jest \(\displaystyle{ \mathcal{N}(1,1)}\), więc \(\displaystyle{ E(X)=E(Y)=1}\) i \(\displaystyle{ \sigma_{X} ^ 2=\sigma_{Y}^2=1}\)).

W obliczeniach korzystałem z:
  1. \(\displaystyle{ Cov(X,Y)=E(XY)-E(X)E(Y)}\)
  2. \(\displaystyle{ \sigma_{X}=\sqrt{V(X)}}\)
  3. \(\displaystyle{ V(X)=E(X^2)-E^2(X)}\)
  4. \(\displaystyle{ E(aX+bY)=a\cdot E(X) + b\cdot E(Y)}\)
  5. \(\displaystyle{ V(aX+bY)=a^2 E(X) + b^2 E(Y) + 2ab\cdot Cov(X,Y)}\)
  6. jeśli zmienne losowe są niezależne to \(\displaystyle{ E(XY)=E(X)\cdot E(Y)}\) i \(\displaystyle{ Cov(X,Y)=0}\) (wniosek z 1)
Korelacja policzona, ale ciągle nie wiem jak policzyć rozkład \(\displaystyle{ f_{U}}\) i \(\displaystyle{ f_{V}}\).

Standaryzowany rozkład normalny - gęstość zmiennych losowych

: 29 cze 2013, o 11:34
autor: robertm19
Odpowiedz sobie najpierw jaki ma rozkład zmienna \(\displaystyle{ 2X}\) i \(\displaystyle{ -Y}\).
Potem skorzystaj z własności 2. na stronie
Korelacja jest dobrze wyznaczona.

Standaryzowany rozkład normalny - gęstość zmiennych losowych

: 29 cze 2013, o 16:18
autor: patryk007
Znalazłem, że jeśli \(\displaystyle{ X_{1}\sim\mathcal{N}(\mu_{1},\sigma_{1}^{2})}\) i \(\displaystyle{ X_{2}\sim\mathcal{N}(\mu_{2},\sigma_{2}^{2})}\) to \(\displaystyle{ X_{1} \pm X_{2} \sim \mathcal{N}(\mu_{1}\pm\mu_{1},\sigma_{1}^{2}+\sigma_{2}^{2})}\). Z czego można skorzystać nie wyznaczając rozkładu \(\displaystyle{ -U}\).

Mimo wszystko spróbowałem do wyznaczyć gęstość rozkładu \(\displaystyle{ -U}\).

Gęstość rozkładu normalnego \(\displaystyle{ \mathcal{N}(\mu , \ \sigma^2)}\) dla zmiennej losowej \(\displaystyle{ X}\) to \(\displaystyle{ f_{\mu,\sigma}(x)=\frac{1}{\sigma\cdot \sqrt{2\pi}}\cdot\exp{(-\frac{(x-\mu)^2}{2\sigma^2})}}\).
Więc aby policzyć gęstość rozkładu dla zmiennej losowej \(\displaystyle{ -X}\) liczę:
\(\displaystyle{ f_{\mu,\sigma}(-x)=\\=\frac{1}{\sigma\cdot \sqrt{2\pi}}\cdot\exp{(-\frac{(-x-\mu)^2}{2\sigma^2})}=\\=\frac{1}{\sigma\cdot \sqrt{2\pi}}\cdot\exp{(-\frac{(x+\mu)^2}{2\sigma^2})}=\\=
f_{-\mu,\sigma}(x)
=\\=\frac{1}{\sigma\cdot \sqrt{2\pi}}\cdot\exp{(-\frac{((x+2\sigma)-\mu)^2}{2\sigma^2})}=\\=f_{\mu,\sigma}(x+2\sigma )}\)


Więc \(\displaystyle{ -X\sim \mathcal{N}(-\mu,\sigma^2)}\). I chyba to chciałem pokazać. ;P

---------

Więc ostatecznie rozkłady \(\displaystyle{ U,\ V}\) są takie:

\(\displaystyle{ 2X\sim \mathcal{N}(2,2)\\
U=2X-Y\sim \mathcal{N}(1,3)}\)


\(\displaystyle{ 2Y\sim \mathcal{N}(2,2)\\
V=X-2Y\sim\mathcal{N}(-1,3)}\)