Statyka belki - wyznaczenie i obliczenie reakcji w podporach

bezrobotny_holik
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 15 kwie 2013, o 23:44
Płeć: Mężczyzna
Lokalizacja: Mw-o

Statyka belki - wyznaczenie i obliczenie reakcji w podporach

Post autor: bezrobotny_holik » 16 kwie 2013, o 01:51

Witam, poszukuję pomocy przy rozwiązaniu kilku zadań ze statyki.

Zadania:
http://imageshack.us/photo/my-images/54 ... ka101.jpg/
W pierwszym zadaniu wyznaczyłem równania reakcji i momentów, lecz nie jestem pewien czy jest to dobrze - no i w tym tkwi problem ponieważ dalej nie wiem jak się do tego zabrać.

Równania reakcji do 1 zadania:

\(\sum F _{x} =0 \implies R _{AX} -P=0\)
\(\sum F_{y}=0 \implies R_{AY} + R_{b} -q \times a=0\)
\(\sum M_{A}=0 \implies R_{BY} \times 2a - M \times 2a=0\)

Będę naprawdę wdzięczny choćby o małą wskazówkę gdzie zrobiłem błąd lub też co trzeba zrobić aby rozwiązać zadanie.

kruszewski
Użytkownik
Użytkownik
Posty: 6289
Rejestracja: 7 gru 2010, o 16:50
Płeć: Mężczyzna
Lokalizacja: Staszów

Statyka belki - wyznaczenie i obliczenie reakcji w podporach

Post autor: kruszewski » 16 kwie 2013, o 12:53

Równanie sumy momentów sił i momentu skupionego jest złe.
Proszę zauważyć, że wymiar (jednostki) drugiego składnika równania nie odpowiadają wymiarowi momentu oraz i to, że zabrakło w nim momentu siły \(P\) względem bieguna (lewej podpory).
W.Kr.

bezrobotny_holik
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 15 kwie 2013, o 23:44
Płeć: Mężczyzna
Lokalizacja: Mw-o

Statyka belki - wyznaczenie i obliczenie reakcji w podporach

Post autor: bezrobotny_holik » 16 kwie 2013, o 21:46

Kompletnie nie rozumiem twojej odpowiedzi, wybacz ;/

kruszewski
Użytkownik
Użytkownik
Posty: 6289
Rejestracja: 7 gru 2010, o 16:50
Płeć: Mężczyzna
Lokalizacja: Staszów

Statyka belki - wyznaczenie i obliczenie reakcji w podporach

Post autor: kruszewski » 16 kwie 2013, o 22:55

Kolega napisał równanie:
\(\sum M_{A}=0 \implies R_{BY} \times 2a - M \times 2a=0\)
jego zgodność wymiarowa jest taka:
\(\Sigma M_A N \cdot m = R_B_y N \cdot 2 \cdot a m - M Nm \cdot 2a m\)
Co wymiarowo , w jednostkach miar, daje :
\(N \cdot m = N \cdot m -N \cdot m \cdot m = Nm -Nm^2\)
I wygląda to tak, jak kiedyś jeden z prześwietnych piszących tu Kolegów napisał, jak dodawanie jabłek do sznurka. I jak tu podpowiedzieć Koledze sposób na rozwiązywanie takich belek ?

W.Kr.

ODPOWIEDZ