Krzywa ugięcia belki. Metoda Clebscha

darek90r
Użytkownik
Użytkownik
Posty: 31
Rejestracja: 21 sty 2010, o 17:50
Płeć: Mężczyzna
Lokalizacja: Rzeszów

Krzywa ugięcia belki. Metoda Clebscha

Post autor: darek90r » 16 sty 2013, o 14:17

Chciałbym prosić o sprawdzenie rozwiązania takiego zadania gdyż mam kilka wątpliwości.
Mam obliczyć przemieszczenie i kąt obrotu



Dane:

\(F=1500N\)

\(Ra=Rb=750N\)

\(l=0,1m\)

Oblicz:

\(y(x=0)=?\)

\(y'(x=l)=?\)

Moje obliczenia

\(M_{x}=Ra (x-l)-F (x-2l)\)

\(EI''w=Ra (x-l)-F (x-2l)\)

\(EI'w=Ra \frac{(x-l) ^{2} }{2} - F \frac{(x-2l) ^{2} }{2} + C\)

\(EIw= Ra \frac{(x-l) ^{3} }{6} - F \frac{(x-2l) ^{3} }{6} +Cx+D\)

Warunki brzegowe. Nie jestem pewien czy dobre.

\(w(l)=0\)

\(w(3l)=0\)

Teraz te warunki wstawiam do równania EIw ?


\(EIw \cdot 0=Ra \frac{(l-l) ^{3} }{6} - F \frac{(l-2l) ^{3} }{6} +Cl+D\)

\(EIw \cdot 0=Ra \frac{(3l-l) ^{3} }{6} - F \frac{(3l-2l) ^{3} }{6} +C3l+D\)


\(0=- F \frac{(l-2l) ^{3} }{6} +Cl+D\)

\(0=Ra \frac{(2l) ^{3} }{6} - F \frac{(l) ^{3} }{6} +C3l+D\)


\(0=0,25+0,1C+D=0\)

\(0=0,75+0,3C+D\)


\(C=-2,5\)

\(D=0\)

Przemieszczenie

\(w= w_{(0)}= \frac{1}{EI} Ra \frac{(0-l) ^{3} }{6} - F \frac{(0-2l) ^{3} }{6} +C0+D= -\frac{11,5}{6EI}\)

Kąt obrotu

\(fi_{a}= w'_{(l)}=\frac{1}{EI} Ra \frac{(l-l) ^{2} }{2} - F \frac{(l-l) ^{2} }{2} + C=\frac{20}{2EI}\)

Koniec

ODPOWIEDZ