Strona 1 z 1

Szereg harmoniczny

: 15 gru 2004, o 15:49
autor: Anja
\(\displaystyle{ \large\bigsum_{n=1}^{\infty} (-1) \frac{1} {\sqrt{n}}}\)


Witam
z tym ciagiem to jest tak, ze obliczylam wyraz ogolny:

\(\displaystyle{ \large a_{n}=\frac{-1}{2^{\frac{1}{2}}}}\)

stad wynika ze jest to szereg harmoniczny rzedu alfa=1/2.
Poniewaz alfa = 1/2 jest

Szereg harmoniczny

: 15 gru 2004, o 16:43
autor: g
co to jest a_n ? jakim cudem wyraz ogolny wynosi tyle?

a co do szeregu to to jest -zeta(0,5) co jest rozbiezne oczywiscie.

Szereg harmoniczny

: 16 gru 2004, o 09:23
autor: Anja
Nie wiedzialam, co zrobic z (-1), ale teraz chyba juz wiem .
Z twierdzenia: Jesli dany jest szereg, i stala c rozne od 0, to jesli szereg jest rozbiezny, to rowniez

\(\displaystyle{ \large{\bigsum_{n=1}^{\infty}c a_{n}}}\)
jest rozbiezny.

Tylko jak to wykazac? Czy trzeba wogole?

Druga sprawa: ten szereg jest harmoniczny rzedu 1/2, co jest mniejsze od 1, wiec rozbiezny, bo nie spelnia warunku koniecznego.

Czy teraz lepiej rozwiazalam?[/code]

Szereg harmoniczny

: 16 gru 2004, o 21:55
autor: liu
Jesli bardzo chcesz dowiesc... Zalozmy, ze szereg