pierwiastek liczby zespolonej.
: 14 mar 2012, o 16:27
Mam szybkie pytanie, czy zadanie jest rozwiazane poprawnie?
Oblicz: \(\displaystyle{ \sqrt[4]{-81}}\)
\(\displaystyle{ \left| z\right| = \left| -81\right| = \left| -81 + 0 \cdot i\right|=81 \\
\varphi = 0 \\
z=-81=81 \left( \cos \left( 0 \right) + i\sin \left( 0 \right) \right) \\
n=4 \\
\left( \sqrt[4]{-81} \right) _{0} = 3 \left( \cos \left( 0 \right) + i\sin \left( 0 \right) \right) \\
\left( \sqrt[4]{-81} \right) _{1} = 3 \left( \cos \left( \frac{ \pi }{2} \right) + i\sin \left( \frac{ \pi }{2} \right) \right) \\
\left( \sqrt[4]{-81} \right) _{2} = 3 \left( \cos \left( \pi \right) + i\sin \left( \pi_ \right) \right )\\
\left( \sqrt[4]{-81} \right) _{3} = 3 \left( \cos \left( \frac{ 3\pi }{2} \right) + i\sin \left( \frac{ 3\pi }{2} \right) \right)}\)
Oblicz: \(\displaystyle{ \sqrt[4]{-81}}\)
\(\displaystyle{ \left| z\right| = \left| -81\right| = \left| -81 + 0 \cdot i\right|=81 \\
\varphi = 0 \\
z=-81=81 \left( \cos \left( 0 \right) + i\sin \left( 0 \right) \right) \\
n=4 \\
\left( \sqrt[4]{-81} \right) _{0} = 3 \left( \cos \left( 0 \right) + i\sin \left( 0 \right) \right) \\
\left( \sqrt[4]{-81} \right) _{1} = 3 \left( \cos \left( \frac{ \pi }{2} \right) + i\sin \left( \frac{ \pi }{2} \right) \right) \\
\left( \sqrt[4]{-81} \right) _{2} = 3 \left( \cos \left( \pi \right) + i\sin \left( \pi_ \right) \right )\\
\left( \sqrt[4]{-81} \right) _{3} = 3 \left( \cos \left( \frac{ 3\pi }{2} \right) + i\sin \left( \frac{ 3\pi }{2} \right) \right)}\)