Liczby spełniające równość

Obiekty i przekształcenia geometryczne, opisane za pomocą układu (nie zawsze prostokątnego) współrzędnych.
Przybysz
Użytkownik
Użytkownik
Posty: 395
Rejestracja: 13 sie 2010, o 22:42
Płeć: Mężczyzna

Liczby spełniające równość

Post autor: Przybysz » 10 mar 2012, o 11:43

Sprawdź czy istnieją takie liczby p i r że spełniona jest równość \(\displaystyle{ \vec{x} = p \vec{u} + r \vec{v}}\)

\(\displaystyle{ \vec{u} =[3;-6], \vec{v}=[-4;2], \vec{x}= [8;-13]}\)
Ostatnio zmieniony 10 mar 2012, o 11:47 przez lukasz1804, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.

Awatar użytkownika
szw1710
Gość Specjalny
Gość Specjalny
Posty: 18651
Rejestracja: 1 cze 2010, o 22:13
Płeć: Mężczyzna
Lokalizacja: Cieszyn

Liczby spełniające równość

Post autor: szw1710 » 10 mar 2012, o 11:46

Istnieją, gdyż wektory \(\displaystyle{ \vec{u},\vec{v}}\) nie są równoległe, a co za tym idzie, każdy inny wektor można osiągnąć poruszając się w dwóch kierunkach wyznaczonych przez te dwa wektory. O to chodzi w pojęciu liniowej niezależności wektorów. Nic innego jak rozwiązać odpowiedni układ równań. Będzie miał jednoznaczne rozwiązanie. Mówimy, że wektor \(\displaystyle{ \vac{x}}\) przedstawia się jako kombinacja liniowa wektorów \(\displaystyle{ \vec{u},\vec{v}}\).

Przybysz
Użytkownik
Użytkownik
Posty: 395
Rejestracja: 13 sie 2010, o 22:42
Płeć: Mężczyzna

Liczby spełniające równość

Post autor: Przybysz » 10 mar 2012, o 11:57

a jak ten układ miałby wyglądać ?

manduka
Użytkownik
Użytkownik
Posty: 350
Rejestracja: 7 lis 2011, o 20:48
Płeć: Mężczyzna

Liczby spełniające równość

Post autor: manduka » 10 mar 2012, o 12:03

przypomnij sobie jak się dodaje i mnoży wektory

Przybysz
Użytkownik
Użytkownik
Posty: 395
Rejestracja: 13 sie 2010, o 22:42
Płeć: Mężczyzna

Liczby spełniające równość

Post autor: Przybysz » 10 mar 2012, o 12:13

podstawić za wektory i otrzymam
\(\displaystyle{ \vec{x} = -3p-2r}\) ?

manduka
Użytkownik
Użytkownik
Posty: 350
Rejestracja: 7 lis 2011, o 20:48
Płeć: Mężczyzna

Liczby spełniające równość

Post autor: manduka » 10 mar 2012, o 12:20

źle,
\(\displaystyle{ [8,-13]= p [3,-6]+r [-4,2]}\)
\(\displaystyle{ [8,-13]= [3p,-6p]+ [-4r, 2r]}\)

\(\displaystyle{ \begin{cases} 8= 3p-4r \\ -13=-6p+2r \end{cases}}\)

ODPOWIEDZ