[Kombinatoryka] Dwa kolory i trójkąt
Regulamin forum
Wszystkie tematy znajdujące się w tym dziale powinny być tagowane tj. posiadać przedrostek postaci [Nierówności], [Planimetria], itp.. Temat może posiadać wiele różnych tagów. Nazwa tematu nie może składać się z samych tagów.
Wszystkie tematy znajdujące się w tym dziale powinny być tagowane tj. posiadać przedrostek postaci [Nierówności], [Planimetria], itp.. Temat może posiadać wiele różnych tagów. Nazwa tematu nie może składać się z samych tagów.
[Kombinatoryka] Dwa kolory i trójkąt
Każdy punkt płaszczyzny malujemy na jeden z dwóch kolorów. Pokazać, że istnieje trójkąt którego wierzchołki i środek okręgu wpisanego są jednokolorowe.
-
samurajnowy
- Użytkownik

- Posty: 11
- Rejestracja: 9 lut 2013, o 00:17
- Płeć: Mężczyzna
- Lokalizacja: borki
- Podziękował: 1 raz
- Pomógł: 1 raz
[Kombinatoryka] Dwa kolory i trójkąt
Przypadek gdy zbiór pokolorowany na czarno lub biało ma jakikolwiek podzbiór zwarty jest banalny,
przypadek gdy jeden kolor stanowi zbiór gęsty nieprzeliczalny a drugi przeliczalny gęsty jest też do przeskoczenia.
Najgorzej sprawa się ma gdy oba zbiory są gęste i nieprzeliczalne!
-- 3 mar 2013, o 19:23 --
Nasuwa mi się jeszcze, że środek okręgu wpisanego obliczalny jest za pomocą działań +, *,
i jest rozszerzeniem pierwiastnikowym ciała zawierającego współrzędne wierzchołków trójkąta.
przypadek gdy jeden kolor stanowi zbiór gęsty nieprzeliczalny a drugi przeliczalny gęsty jest też do przeskoczenia.
Najgorzej sprawa się ma gdy oba zbiory są gęste i nieprzeliczalne!
-- 3 mar 2013, o 19:23 --
Nasuwa mi się jeszcze, że środek okręgu wpisanego obliczalny jest za pomocą działań +, *,
i jest rozszerzeniem pierwiastnikowym ciała zawierającego współrzędne wierzchołków trójkąta.

