Strona 1 z 1

Troszeczkę teorii

: 4 lut 2012, o 14:12
autor: Browning0
Good morning matematyka.pl!
Czytam sobie dzielnie konspekty z pięknego przedmiotu "Algebra liniowa" i jest parę miejsc, w których moja wiedza "buntuje się" z tym co czytam. Czy moglibyście jakoś mi w tym pomóc?

Zagadnienie 1
Zbiór K zawierający co najmniej dwa elementy nazywamy ciałem...

Hmm, czy istnieje taki zbiór, który zawiera tylko 2 elementy i jest ciałem? Zastanawiałem się nad \(\displaystyle{ \left\{ 0, 1\right\}}\), ale odpada bo nie ma elementu odwrotnego w dodawaniu, w dodatku dodawanie "nie mieści się" w tym zbiorze (\(\displaystyle{ 1+1=2 \not\in K}\))


Zagadnienie 2
Przykłady ciał \(\displaystyle{ (\mathbb{R}, +, \cdot),(\mathbb{Q},+,\cdot),(\mathbb{Q}(\sqrt{2}),+,\cdot)}\),...

Co oznacza zapis \(\displaystyle{ \mathbb{Q}(\sqrt{2})}\)? Zbiór wszystkich liczb wymiernych pomnożonych przez \(\displaystyle{ \sqrt{2}}\)?

Troszeczkę teorii

: 4 lut 2012, o 14:15
autor: bartek118
1. Ciało charakterystyki 2. dla przykładu właśnie zbiór \(\displaystyle{ \left\{ 0, 1\right\}}\).

2. \(\displaystyle{ \mathbb{Q}(\sqrt{2}) = \left\{ a+b\sqrt{2}\ | \ a,b\in\mathbb{Q}\right\}}\)

Troszeczkę teorii

: 4 lut 2012, o 15:12
autor: Browning0
Super, wielkie dzięki!

Pozwolę sobie dorzucić kolejną rzecz. Mianowicie w konspekcie jest jedno twierdzenie, które ma całą masę literówek, co przyznała sama wykładowczyni. Niestety nie chciało jej się mówić jakie i gdzie
Czy mógłby ktoś wskazać te literówki, opierając się na własnej wiedzy?

Twierdzenie znajduje się w dziale "Przestrzenie wektorowe" i brzmi następująco:

Zagadnienie 3
Twierdzenie. Niech \(\displaystyle{ u \subseteq V}\). Wtedy następujące warunki są równoważne:
1. \(\displaystyle{ U < V}\)
2. \(\displaystyle{ \forall _{a,b \in K} \ \forall _{u,v \in U} \quad au+bv \in U}\)
3. \(\displaystyle{ \forall_{a_{1},a_{2}, \ldots, a_{k} \in K} \ \forall_{u_{1},u_{2}, \ldots, u_{k} \in U} \quad a_{1}u_{1}+a_{2}u_{2}+\ldots +a_{k}v_{k} \in U}\)

Zauważmy, że z twierdzenia wynika, że U jest podprzestrzenią przestrzeni V wtedy i tylko wtedy gdy U jest zamknięte ze względu na wszystkie kombinacje liniowe wektorów z U
Pozdrawiam!

Troszeczkę teorii

: 4 lut 2012, o 16:56
autor: bartek118
Poza tym, że pierwsze \(\displaystyle{ u}\) powinno być wielkie: \(\displaystyle{ U}\), to nie widzę literówek ani błędów.

Troszeczkę teorii

: 4 lut 2012, o 17:14
autor: marcinz
Browning0 pisze: Twierdzenie. Niech \(\displaystyle{ u \subseteq V}\). Wtedy następujące warunki są równoważne:
1. \(\displaystyle{ U < V}\)
2. \(\displaystyle{ \forall _{a,b \in K} \ \forall _{u,v \in U} \quad au+bv \in U}\)
3. \(\displaystyle{ \forall_{a_{1},a_{2}, \ldots, a_{k} \in K} \ \forall_{u_{1},u_{2}, \ldots, u_{k} \in U} \quad a_{1}u_{1}+a_{2}u_{2}+\ldots +a_{k}v_{k} \in U}\)

Zauważmy, że z twierdzenia wynika, że U jest podprzestrzenią przestrzeni V wtedy i tylko wtedy gdy U jest zamknięte ze względu na wszystkie kombinacje liniowe wektorów z U
W 2. na końcu ma być \(\displaystyle{ V}\) (zamiast \(\displaystyle{ U}\)), w trzecim ostatnie \(\displaystyle{ U}\) też trzeba zmienić na \(\displaystyle{ V}\).

Troszeczkę teorii

: 4 lut 2012, o 19:57
autor: bartek118
marcinz pisze:
Browning0 pisze: Twierdzenie. Niech \(\displaystyle{ u \subseteq V}\). Wtedy następujące warunki są równoważne:
1. \(\displaystyle{ U < V}\)
2. \(\displaystyle{ \forall _{a,b \in K} \ \forall _{u,v \in U} \quad au+bv \in U}\)
3. \(\displaystyle{ \forall_{a_{1},a_{2}, \ldots, a_{k} \in K} \ \forall_{u_{1},u_{2}, \ldots, u_{k} \in U} \quad a_{1}u_{1}+a_{2}u_{2}+\ldots +a_{k}v_{k} \in U}\)

Zauważmy, że z twierdzenia wynika, że U jest podprzestrzenią przestrzeni V wtedy i tylko wtedy gdy U jest zamknięte ze względu na wszystkie kombinacje liniowe wektorów z U
W 2. na końcu ma być \(\displaystyle{ V}\) (zamiast \(\displaystyle{ U}\)), w trzecim ostatnie \(\displaystyle{ U}\) też trzeba zmienić na \(\displaystyle{ V}\).
Nie zgodzę się z Tobą, bo wtedy te warunki, nic sensownego by nie znaczyły, to po prostu własność przestrzeni liniowej \(\displaystyle{ V}\)

Troszeczkę teorii

: 4 lut 2012, o 20:01
autor: adner
Nie, to chyba chodzi o to, że U jest podprzestrzenią V, więc faktycznie to trzeba poprawić.

Troszeczkę teorii

: 4 lut 2012, o 21:03
autor: Browning0
I jaki jest konsensus? ^^ widzę że jest zgodność co do pierwszej linijki: jest u, powinno być U.
Domyślam się również że w trzecim warunku gdzie jest \(\displaystyle{ a_{k}v_{k}}\) powinno być \(\displaystyle{ a_{k}u_{k}}\), prawda?

Co natomiast z U i V? Chyba rzeczywiście U powinno być zamienione na V. Nie chcę się wypowiadać, bo jestem przy Was malutki, ale bez zamiany U na V to nie ma żadnego związku między warunkiem 2. i 1. Podobnie jeżeli chodzi o warunki 3. i 1.