dwusieczna trójkąta

Dział całkowicie poświęcony zagadnieniom związanymi z trójkątami. Temu co się w nie wpisuje i na nich opisuje - też...
witch
Użytkownik
Użytkownik
Posty: 36
Rejestracja: 27 wrz 2009, o 16:31
Płeć: Kobieta
Podziękował: 5 razy

dwusieczna trójkąta

Post autor: witch » 8 sty 2012, o 20:04

Kiedy dwusieczna trójkąta jest równa bokowi na który pada?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

mathiu11
Użytkownik
Użytkownik
Posty: 382
Rejestracja: 5 sty 2010, o 18:46
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 50 razy

dwusieczna trójkąta

Post autor: mathiu11 » 9 sty 2012, o 01:24

Kiedy trójkąt jest równoramienny (kąt między bokami równoramiennymi jest \(\displaystyle{ 2 \alpha}\)) i \(\displaystyle{ tg \alpha = \frac{1}{2}}\)
Czyli, możesz wyliczyć sobie kąt.
Ostatnio zmieniony 9 sty 2012, o 07:27 przez mathiu11, łącznie zmieniany 1 raz.

anna_
Użytkownik
Użytkownik
Posty: 16291
Rejestracja: 26 lis 2008, o 20:14
Płeć: Kobieta
Podziękował: 27 razy
Pomógł: 3232 razy

dwusieczna trójkąta

Post autor: anna_ » 9 sty 2012, o 05:18

mathiu11 pisze:Kiedy trójkąt jest równoramienny
Nieprawda.

mathiu11
Użytkownik
Użytkownik
Posty: 382
Rejestracja: 5 sty 2010, o 18:46
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 50 razy

dwusieczna trójkąta

Post autor: mathiu11 » 9 sty 2012, o 16:04

Co jest nieprawdą ?

anna_
Użytkownik
Użytkownik
Posty: 16291
Rejestracja: 26 lis 2008, o 20:14
Płeć: Kobieta
Podziękował: 27 razy
Pomógł: 3232 razy

dwusieczna trójkąta

Post autor: anna_ » 9 sty 2012, o 16:06

że w trojkącie równoramiennym dwusieczna kąta jest równa bokowi na który pada

mathiu11
Użytkownik
Użytkownik
Posty: 382
Rejestracja: 5 sty 2010, o 18:46
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 50 razy

dwusieczna trójkąta

Post autor: mathiu11 » 9 sty 2012, o 16:26

Ale ja napisałem co innego.

anna_
Użytkownik
Użytkownik
Posty: 16291
Rejestracja: 26 lis 2008, o 20:14
Płeć: Kobieta
Podziękował: 27 razy
Pomógł: 3232 razy

dwusieczna trójkąta

Post autor: anna_ » 9 sty 2012, o 16:32

Edytowałeś posta po moim wpisie.
Teraz ma inny sens.

Awatar użytkownika
timon92
Użytkownik
Użytkownik
Posty: 1532
Rejestracja: 6 paź 2008, o 16:47
Płeć: Mężczyzna
Lokalizacja: Katowice
Podziękował: 4 razy
Pomógł: 434 razy

dwusieczna trójkąta

Post autor: timon92 » 9 sty 2012, o 16:58

no ale nie tylko wtedy tak jest

takich trójkątów jest od groma i można to jakoś sparametryzować, może potem napiszę jak, jeśli ktoś jest ciekawy

mathiu11
Użytkownik
Użytkownik
Posty: 382
Rejestracja: 5 sty 2010, o 18:46
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 50 razy

dwusieczna trójkąta

Post autor: mathiu11 » 9 sty 2012, o 17:32

Anno, niestety, ale nie zmieniłem treści swojej odpowiedzi tylko zamieniłem wzór na Latex.

anna_
Użytkownik
Użytkownik
Posty: 16291
Rejestracja: 26 lis 2008, o 20:14
Płeć: Kobieta
Podziękował: 27 razy
Pomógł: 3232 razy

dwusieczna trójkąta

Post autor: anna_ » 9 sty 2012, o 17:42

\(\displaystyle{ d}\)- dwusieczna kąta A

\(\displaystyle{ d=\frac{\sqrt{bc[(b+c)^2-a^2]}}{b+c}}\)

czyli musi zachodzić:
\(\displaystyle{ \frac{\sqrt{bc[(b+c)^2-a^2]}}{b+c}=a}\)
powodzenia

witch
Użytkownik
Użytkownik
Posty: 36
Rejestracja: 27 wrz 2009, o 16:31
Płeć: Kobieta
Podziękował: 5 razy

dwusieczna trójkąta

Post autor: witch » 28 sty 2012, o 19:12

w jaki sposób można by udowodnić ten wzór na dlugość dwusiecznej?

tatteredspire
Użytkownik
Użytkownik
Posty: 716
Rejestracja: 2 wrz 2009, o 21:59
Płeć: Mężczyzna
Podziękował: 83 razy
Pomógł: 74 razy

dwusieczna trójkąta

Post autor: tatteredspire » 28 sty 2012, o 22:17

Możesz spróbować w ten sposób:

Masz dany \(\displaystyle{ \Delta_{ABC}}\) taki, że \(\displaystyle{ |AB|=c, |AC|=b, |BC|=a}\) oraz "naprzeciwko" boku \(\displaystyle{ BC}\) jest kąt wewnętrzny o mierze \(\displaystyle{ \alpha}\), "naprzeciwko" boku \(\displaystyle{ AC}\) kąt wewnętrzny o mierze \(\displaystyle{ \beta}\) oraz "naprzeciwko" boku \(\displaystyle{ AB}\) kąt wewnętrzny o mierze \(\displaystyle{ \gamma}\).

Aby obliczyć długość dwusiecznej kąta o mierze \(\displaystyle{ \alpha}\) możesz postępować następująco:

Oznaczmy długość tej dwusiecznej przez \(\displaystyle{ |AD|}\) gdzie \(\displaystyle{ D \in BC}\),

Niech punkt \(\displaystyle{ D}\) dzieli odcinek \(\displaystyle{ BC}\) w ten sposób, że \(\displaystyle{ |BD|=a-x}\) oraz \(\displaystyle{ |DC|=x}\)

Następnie kolejno wykonujesz następujące czynności:

\(\displaystyle{ 1.}\) Z twierdzenia o dwusiecznej kąta wewnętrznego w trójkącie mamy (dla kąta o mierze \(\displaystyle{ \alpha}\)) \(\displaystyle{ \frac{c}{b}=\frac{a-x}{a}}\) - wyznaczasz stąd \(\displaystyle{ x}\)


\(\displaystyle{ 2.}\) Z twierdzenia sinusów

\(\displaystyle{ \frac{a}{\sin \alpha }=\frac{b}{\sin B} \Leftrightarrow \sin \beta =\frac{b\sin \alpha }{a} \Leftrightarrow \sin^2 \beta =\frac{b^2\sin^2 \alpha }{a^2} \Leftrightarrow -\sin^2 \beta =-\frac{b^2 \cdot \sin^2 \alpha }{a^2} \Leftrightarrow 1-\sin^2 \beta =-\frac{b^2\sin^2 \alpha }{a^2}+1 \Leftrightarrow \cos^2 \beta =-\frac{b^2\sin^2 \alpha }{a^2}+1 \Leftrightarrow \\ \cos \beta =-\sqrt{\frac{-b^2\sin^2 \alpha }{a^2}+1} \ \vee \cos \beta =\sqrt{\frac{-b^2\sin^2 \alpha }{a^2}+1}}\)


\(\displaystyle{ 3.}\) Przyrównujesz dwa wzory na pole trójkąta \(\displaystyle{ \sqrt{p(p-a)(p-b)(p-c)}=\frac{bc}{2} \cdot \sin \alpha}\) skąd wyznaczasz \(\displaystyle{ \sin \alpha}\)
gdzie \(\displaystyle{ p=\frac{a+b+c}{2}}\)

Na koniec podstawiasz wyznaczone wartości do wzoru \(\displaystyle{ |AD|=\sqrt{c^2+(a-x)^2-2c(a-x)\cos \beta}}\) tak aby wszystko było wyrażone jedynie od wartości \(\displaystyle{ a,b,c}\)

PS: Nigdy mnie to nie interesowało i nie znam najszybszego sposobu.

Awatar użytkownika
timon92
Użytkownik
Użytkownik
Posty: 1532
Rejestracja: 6 paź 2008, o 16:47
Płeć: Mężczyzna
Lokalizacja: Katowice
Podziękował: 4 razy
Pomógł: 434 razy

dwusieczna trójkąta

Post autor: timon92 » 29 sty 2012, o 01:08

chyba najszybciej jest z twierdzenia Stewarta (które de facto jest zsumowaniem dwóch twierdzeń cosinusów) i do tego twierdzenie o dwusiecznej

ODPOWIEDZ