granica f dwóch zmiennych

Wyznaczanie granic funkcji. Ciągłość w punkcie i ciągłość jednostajna na przedziale. Reguła de l'Hospitala.
skolukmar
Użytkownik
Użytkownik
Posty: 250
Rejestracja: 22 cze 2009, o 22:20
Płeć: Mężczyzna
Podziękował: 37 razy
Pomógł: 5 razy

granica f dwóch zmiennych

Post autor: skolukmar » 8 wrz 2011, o 14:36

Funkcja \(\displaystyle{ f:R^2 \rightarrow R^2}\) ma dokladnie dwa lokalne ekstrema: lokalne maksimum w \(\displaystyle{ (1,0)}\) (z wartością 2) i lokalne minimum w \(\displaystyle{ (-1,0)}\) (z wartością -2).
Czy \(\displaystyle{ \lim_{ x\to + \infty } f(x,0)}\) może być równa 4 lub 2 ?

Czy może chodzić o to, ze funkcja nie musi być ciągła ? Wtedy byłoby to możliwe.

Np dla \(\displaystyle{ x=10}\) , dla \(\displaystyle{ \lim_{ x\to + 10} = + \infty}\) i potem dla \(\displaystyle{ x > 10}\) granica może być 4 i 2 ?

Awatar użytkownika
Lorek
Gość Specjalny
Gość Specjalny
Posty: 7149
Rejestracja: 2 sty 2006, o 22:17
Płeć: Mężczyzna
Lokalizacja: Ruda Śląska
Podziękował: 1 raz
Pomógł: 1322 razy

granica f dwóch zmiennych

Post autor: Lorek » 8 wrz 2011, o 18:16

skolukmar pisze: Np dla \(\displaystyle{ x=10}\) , dla \(\displaystyle{ \lim_{ x\to + 10} = + \infty}\) i potem dla \(\displaystyle{ x > 10}\) granica może być 4 i 2 ?
Tu chyba coś jest nie tak...

Jak nie ma założenia o ciągłości, to taki przykład łatwo znaleźć nawet dla \(\displaystyle{ f: \ \mathbb{R}\to \mathbb{R}}\), a później rozszerzyć ją na \(\displaystyle{ \mathbb{R}^2\to \mathbb{R}^2}\). Natomiast znalezienie takiej funkcji ciągłej jest już ciekawszym zadaniem.

skolukmar
Użytkownik
Użytkownik
Posty: 250
Rejestracja: 22 cze 2009, o 22:20
Płeć: Mężczyzna
Podziękował: 37 razy
Pomógł: 5 razy

granica f dwóch zmiennych

Post autor: skolukmar » 9 wrz 2011, o 01:23

A przy założeniu ciągłości, jest to w ogóle możliwe ?
Jak musiałaby wtedy wyglądac taka funkcja ?

Awatar użytkownika
Lorek
Gość Specjalny
Gość Specjalny
Posty: 7149
Rejestracja: 2 sty 2006, o 22:17
Płeć: Mężczyzna
Lokalizacja: Ruda Śląska
Podziękował: 1 raz
Pomógł: 1322 razy

granica f dwóch zmiennych

Post autor: Lorek » 9 wrz 2011, o 14:46

Najlepiej spróbować sobie wyobrazić wykres takiej funkcji, np. bierzemy płaszczyznę, taką na której nie ma ekstremów i dokładamy paraboloidę o wierzchołku w ekstremum. Przy czym płaszczyznę dobieramy tak, żeby przecięła paraboloidę. Wtedy tym przecięciem otrzymujemy elipsę, na której określamy paraboloidę (na pozostałym zbiorze - płaszczyznę). Wyjdzie coś takiego mniej więcej: http://wstaw.org/w/Fqi/
I podobnie postępujemy z innymi ekstremami. Mi np. wyszło coś takiego: \(\displaystyle{ f(x,y)=}\)
\(\displaystyle{ y}\) dla \(\displaystyle{ (x,y)\in (-\infty,4)\times \mathbb{R}}\) bez dwóch elips, na których będą określone paraboloidy.
\(\displaystyle{ -4 (x - 1)^2 - 4 y^2 + 2}\) - paraboloida związana z ekstremum w \(\displaystyle{ (1,0)}\)
\(\displaystyle{ 4 (x +1)^2+ 4 y^2 - 2}\) - paraboloida związana z ekstremum w \(\displaystyle{ (-1,0)}\)
\(\displaystyle{ y+x-4}\) dla \(\displaystyle{ (x,y)in [4,8) imes mathbb{R}}\)
\(\displaystyle{ y+4}\) dla \(\displaystyle{ (x,y)in [8,+infty) imes mathbb{R}}\)
te dwie ostatnie płaszczyzny są tak dobrane, aby zachodził warunek z granicą (no i ciągłość).

ODPOWIEDZ