Udowodnij podzielnosc przez 83

Oddzielone od teorii liczb, proste problemy dotyczące zasad dzielenia itp.
lenkaja
Użytkownik
Użytkownik
Posty: 383
Rejestracja: 10 mar 2009, o 22:56
Płeć: Kobieta
Podziękował: 1 raz
Pomógł: 7 razy

Udowodnij podzielnosc przez 83

Post autor: lenkaja » 5 wrz 2011, o 15:50

Udowodnij, ze 83 dzieli
\(\displaystyle{ (2 \cdot 5 ^{7}-5 \cdot 2 ^{7}) ^{83}-(2 \cdot 5 ^{7}) ^{83}+(5 \cdot 2 ^{7}) ^{83}.}\)

mateuszek89
Użytkownik
Użytkownik
Posty: 1106
Rejestracja: 1 lip 2010, o 15:27
Płeć: Mężczyzna
Lokalizacja: toruń
Pomógł: 153 razy

Udowodnij podzielnosc przez 83

Post autor: mateuszek89 » 5 wrz 2011, o 16:23

Skorzystaj z rozwinięcie newtona i z tego, że \(\displaystyle{ {83 \choose k}}\) jest podzielne przez \(\displaystyle{ 83}\) dla \(\displaystyle{ k \in \{2,...,82 \}}\). pozdrawiam!

lenkaja
Użytkownik
Użytkownik
Posty: 383
Rejestracja: 10 mar 2009, o 22:56
Płeć: Kobieta
Podziękował: 1 raz
Pomógł: 7 razy

Udowodnij podzielnosc przez 83

Post autor: lenkaja » 5 wrz 2011, o 16:27

Dziekuje. A moglbys jakos dokladniej to rozpisac? Bo nie za bardzo wiem jak...

mateuszek89
Użytkownik
Użytkownik
Posty: 1106
Rejestracja: 1 lip 2010, o 15:27
Płeć: Mężczyzna
Lokalizacja: toruń
Pomógł: 153 razy

Udowodnij podzielnosc przez 83

Post autor: mateuszek89 » 5 wrz 2011, o 16:40

Zobacz jak wygląda rozwinięcie dwumianowe i z tego wyciągnij odpowiednie wnioski. Prawie wszystkie składniki będą podzielne przez \(\displaystyle{ 83}\) z tego co napisałem wyżej,a te które nie są podzielne skrócą się:)

lenkaja
Użytkownik
Użytkownik
Posty: 383
Rejestracja: 10 mar 2009, o 22:56
Płeć: Kobieta
Podziękował: 1 raz
Pomógł: 7 razy

Udowodnij podzielnosc przez 83

Post autor: lenkaja » 6 wrz 2011, o 10:53

Ala jak:
z tego, ze
\(\displaystyle{ {83 \choose k}= \frac{83!}{(83-k)!k!}}\)?

mateuszek89
Użytkownik
Użytkownik
Posty: 1106
Rejestracja: 1 lip 2010, o 15:27
Płeć: Mężczyzna
Lokalizacja: toruń
Pomógł: 153 razy

Udowodnij podzielnosc przez 83

Post autor: mateuszek89 » 6 wrz 2011, o 11:59

jak rozwiniesz \(\displaystyle{ (2 \cdot 5^7-5\cdot 2^7)^83}\) to skrócą Ci się pierwszy i ostatni składnik, a reszta będzie podzielna przez \(\displaystyle{ 83}\) z uwagi którą napisałem na samym początku.

Marcinek665
Korepetytor
Korepetytor
Posty: 1824
Rejestracja: 11 sty 2007, o 20:12
Płeć: Mężczyzna
Lokalizacja: Katowice, Warszawa
Podziękował: 73 razy
Pomógł: 228 razy

Udowodnij podzielnosc przez 83

Post autor: Marcinek665 » 6 wrz 2011, o 13:32

Stosując Małe Twierdzenie Fermata otrzymujemy:

\(\displaystyle{ (2 \cdot 5 ^{7}-5 \cdot 2 ^{7}) ^{83}-(2 \cdot 5 ^{7}) ^{83}+(5 \cdot 2 ^{7}) ^{83} \equiv 2 \cdot 5 ^{7}-5 \cdot 2 ^{7}-2 \cdot 5 ^{7}+5 \cdot 2 ^{7} \equiv 0 \ \left( mod \ 83\right)}\), gdyż \(\displaystyle{ 83}\) jest liczbą pierwszą. A to w łatwy sposób kończy dowód.

lenkaja
Użytkownik
Użytkownik
Posty: 383
Rejestracja: 10 mar 2009, o 22:56
Płeć: Kobieta
Podziękował: 1 raz
Pomógł: 7 razy

Udowodnij podzielnosc przez 83

Post autor: lenkaja » 8 wrz 2011, o 11:34

mateuszek89 pisze: \(\displaystyle{ {83 \choose k}}\) jest podzielne przez \(\displaystyle{ 83}\) dla \(\displaystyle{ k \in \{2,...,82 \}}\).
Ok, zrobilam korzystajac z tego. Ale jak udowodnic powyzsze?

pawelsuz
Użytkownik
Użytkownik
Posty: 569
Rejestracja: 15 gru 2008, o 18:22
Płeć: Mężczyzna
Lokalizacja: BK
Podziękował: 73 razy
Pomógł: 40 razy

Udowodnij podzielnosc przez 83

Post autor: pawelsuz » 8 wrz 2011, o 13:24

Rozpisz i skorzystaj z tego ze 83 jest liczba pierwsza.

lenkaja
Użytkownik
Użytkownik
Posty: 383
Rejestracja: 10 mar 2009, o 22:56
Płeć: Kobieta
Podziękował: 1 raz
Pomógł: 7 razy

Udowodnij podzielnosc przez 83

Post autor: lenkaja » 8 wrz 2011, o 18:41

Ale wlanie nie wiem jak to rozpisac zeby bylo widac.

pawelsuz
Użytkownik
Użytkownik
Posty: 569
Rejestracja: 15 gru 2008, o 18:22
Płeć: Mężczyzna
Lokalizacja: BK
Podziękował: 73 razy
Pomógł: 40 razy

Udowodnij podzielnosc przez 83

Post autor: pawelsuz » 8 wrz 2011, o 22:21

Niech p będzie liczba pierwszą.
\(\displaystyle{ {p \choose k}= \frac{1 \cdot 2 \cdot 3 \cdot ... \cdot p}{k! \cdot (p-k)!}}\)
Wiadomo że ta liczba jest całkowita. W liczniku mamy mnożenie przez \(\displaystyle{ p}\). Jeśli ta liczba nie miałaby być podzielna przez \(\displaystyle{ p}\), to to \(\displaystyle{ p}\) z licznika musiało by się jakoś skrócić z mianownikiem. Jako że p jest pierwsze, więc skrócić mogłoby się tylko przez \(\displaystyle{ p}\) w mianowniku ale jako że \(\displaystyle{ 2 \le k \le p-1}\), to wszystkie czynniki tych dwóch silni to liczby mniejsze od \(\displaystyle{ p}\), więc skrócic się nie mogło, czyli wyjściowa liczba jest podzielna przez to nieszczęsne \(\displaystyle{ p}\)

Chyba bardziej sie tego nie da rozpisac:P

lenkaja
Użytkownik
Użytkownik
Posty: 383
Rejestracja: 10 mar 2009, o 22:56
Płeć: Kobieta
Podziękował: 1 raz
Pomógł: 7 razy

Udowodnij podzielnosc przez 83

Post autor: lenkaja » 14 wrz 2011, o 13:33

Dziekuje

ODPOWIEDZ