r.r. liniowe (metoda czynnika całkującego)

Równania różniczkowe i całkowe. Równania różnicowe. Transformata Laplace'a i Fouriera oraz ich zastosowanie w równaniach różniczkowych.
tometomek91
Gość Specjalny
Gość Specjalny
Posty: 2956
Rejestracja: 8 sie 2009, o 23:05
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 281 razy
Pomógł: 495 razy

r.r. liniowe (metoda czynnika całkującego)

Post autor: tometomek91 » 5 wrz 2011, o 09:26

Znaleźć rozwiązanie równania:
\(\displaystyle{ ty'+t^2+ty=y}\)

mam kilka pytań, ktore nasunęły się podczas rozwiązywania
\(\displaystyle{ y'+ \left(1-\frac{1}{t} \right) y=-t\\ y' \exp \left( \int \left(1-\frac{1}{t} \right) dt \right) + \left(1-\frac{1}{t} \right) y \exp \left( \int \left(1-\frac{1}{t} \right) dt \right)=-t \exp \left( \int \left(1-\frac{1}{t} \right) dt \right)}\)
\(\displaystyle{ \left( ye^{t-ln|t|+C_1} \left)'= -te^{t-ln|t|+C_2}}\) czy tutaj stałe C, które dodajemy, muszą być równe? czy one się zredukują w następnym kroku?
\(\displaystyle{ C_3 ye^{t-ln|t|}= \int \left( - C_4 te^{t-ln|t|} \right)dt +c}\) co z tą minus jedynką przed \(\displaystyle{ C_4}\), czy można to wymnożyć z tą stałą i łacznie napisać jako stałą \(\displaystyle{ C_5}\)?
dalej liczę tak:
\(\displaystyle{ C_3 ye^{t-ln|t|}= C_5 \int \left( \frac{t}{|t|}e^t \right) dt +c}\) i tutaj znów znak całki zależy od tego ułamka, czyli znów zastąpić przez np. \(\displaystyle{ C_6}\)??
\(\displaystyle{ C_3 y \frac{t}{|t|}e^t = C_6 e^t +c\\ y=\frac{C}{e^t}+C'}\)
?-- 5 wrz 2011, o 09:39 --[edit]
Już sobie poradziłem, na początku mnozymy równanie przez jedną konkretną funkcję, nie przez rodzinę funkcji, dalej trzeba po prostu z definicji wartości bezwzględnej.

ODPOWIEDZ