Strona 1 z 1

Znaleźć liczbę rozwiązań równania...

: 5 wrz 2011, o 09:11
autor: strzyga
jeśli ktoś mógłby wyjaśnić jak rozwiązuje się tego typu zadanie:

znaleźć liczbę rozwiązań w liczbach całkowitych nieujemnych równania:

\(\displaystyle{ x _{1}+x _{2}+x _{3}+x _{4} =30}\)

takich, że:
a) dla każdego i=1,2,3,4,\(\displaystyle{ x _{i}>i}\)
b) dla każdego i=1,2,3,4,\(\displaystyle{ x _{i}<2i}\)

Znaleźć liczbę rozwiązań równania...

: 5 wrz 2011, o 10:19
autor: Heniek1991
Odejmij od 30 2,3,4,5 i wtedy masz:
\(\displaystyle{ x _{1}+x _{2}+x _{3}+x _{4} = 16}\) dla \(\displaystyle{ x_{i} >= 0}\)
Teraz masz już typowe tego typu zadanie.

\(\displaystyle{ {n+k-1 \choose k-1}}\) Tyle jest rozwiązań równania: \(\displaystyle{ n = \sum_{i=1}^{k} x_{i}}\)

Znaleźć liczbę rozwiązań równania...

: 5 wrz 2011, o 12:27
autor: Xitami
a) 969
b) 1+3+5+7=16

Znaleźć liczbę rozwiązań równania...

: 5 wrz 2011, o 16:05
autor: strzyga
nadal nie rozumiem...

Znaleźć liczbę rozwiązań równania...

: 5 wrz 2011, o 17:29
autor: abc666
Pierwsze:

Mamy do dyspozycji 30 nierozróżnialnych kul oraz 4 szuflady. W pierwszej szufladzie mamy mieć co najmniej 2 kule (\(\displaystyle{ x_1>1}\)), w drugiej 3 itd.. No to wrzućmy od razu do pierwszej szuflady 2 kule, do drugiej 3 itd.. Teraz pozostało nam do rozdzielenia \(\displaystyle{ 30-2-3-4-5=16}\) kul. Jeśli teraz ustawimy te kule w rządku i wstawimy pomiędzy nie 3 przegrody podzielimy je na 4 grupy (niektóre mogą być puste). Ilość ustawień przegród to liczba rozwiązań naszego równania. Mamy tutaj do czynienia z kombinacjami z powtórzeniami. Miejsc na przegrody jest \(\displaystyle{ 17}\) a przegród jest \(\displaystyle{ 3}\). Stąd mamy
\(\displaystyle{ {3+17-1 \choose 3}}\)

Drugiego: z założeń wynika, że wyrażenie \(\displaystyle{ x_1+x_2+x_3+x_4}\) może osiągnąć maksymalnie \(\displaystyle{ 1+3+5+7=16<30}\) czyli mamy 0 rozwiązań.

Znaleźć liczbę rozwiązań równania...

: 5 wrz 2011, o 19:59
autor: strzyga
No właśnie do pierwszego niedawno doszłam a nad drugim się głowiłam bo właśnie mi tak wychodziło jak abc666 powiedziałeś a sobie nie do końca ufałam... Xitami podał wynik 16 i miałam mętlik w głowie. Wielkie dzięki.-- 5 wrz 2011, o 20:14 --hmm tylko że ja zrobiłam inaczej w a)

do pierwszej szuflady dwie kule, do drugiej trzy, do trzeciej cztery a do czwartej pięć. Mam już włożonych 14 kul. Pozostało mi 16. rozmieszczam je więc dowolnie
\(\displaystyle{ {16+4-1 \choose 16}= {19 \choose 16}= \frac{19!}{16!(19-16)!} =969}\)

to jest źle...?

Znaleźć liczbę rozwiązań równania...

: 5 wrz 2011, o 20:39
autor: abc666
Jest ok. \(\displaystyle{ {19 \choose 3} = {19 \choose 16}}\)