Hierarchia symboli logicznych

Zdania. Tautologie. Język matematyki. Wszelkie zagadnienia związane z logiką matematyczną...
tatteredspire
Użytkownik
Użytkownik
Posty: 716
Rejestracja: 2 wrz 2009, o 21:59
Płeć: Mężczyzna
Podziękował: 83 razy
Pomógł: 74 razy

Hierarchia symboli logicznych

Post autor: tatteredspire » 2 wrz 2011, o 23:14

Niektóre symbole: \(\displaystyle{ \wedge , \vee , \neg , \Rightarrow , \Leftrightarrow , \cup , \cap , \setminus ,\forall,\exists}\)

Mam takie pytanie - Czy jest jakaś przyjęta hierarchia między tymi symbolami (jeśli tak to jaka?) czy zawsze należy używać nawiasów (co jest uciążliwe w przypadku rozbudowanych formuł)? Nie udało mi się nigdzie tego znaleźć, a w różnych źródłach widziałem różne zapisy. A może to zależy po prostu od danej konwencji, których jest wiele?

Jan Kraszewski
Administrator
Administrator
Posty: 26928
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4503 razy

Hierarchia symboli logicznych

Post autor: Jan Kraszewski » 2 wrz 2011, o 23:30

Po pierwsze, masz kilka kategorii symboli: spójniki logiczne, operatory teoriomnogościowe, kwantyfikatory.

Jeśli chodzi o symbole logiczne, to powszechnie przyjmowana hierarchia jest taka:
1. negacja
2. koniunkcja i alternatywa
3. implikacja i równoważność
Trzeba jednak pamiętać, że to tylko konwencja i słyszałem o przypadkach używania innych hierarchii. Ale ta jest najpowszechniejsza.

Jeśli chodzi o operatory teoriomnogościowe, to suma i przekrój są równorzędne, a poza tym nie ma ustalonych konwencji, więc ja odejmowanie traktuję też równorzędnie, a nawet iloczyn kartezjański (by uniknąć dwuznaczności).

Kwantyfikatory są równorzędne, a kwestia ich odpowiedniego nawiasowania to inna bajka, nie dotycząca hierarchii.

JK

tatteredspire
Użytkownik
Użytkownik
Posty: 716
Rejestracja: 2 wrz 2009, o 21:59
Płeć: Mężczyzna
Podziękował: 83 razy
Pomógł: 74 razy

Hierarchia symboli logicznych

Post autor: tatteredspire » 3 wrz 2011, o 00:12

A jeśli chodzi o hierarchię symboli należących do dwóch różnych kategorii? Np.:
\(\displaystyle{ p \wedge \forall x (\varphi (x))}\) czy \(\displaystyle{ p \wedge (\forall x (\varphi (x)))}\) ? (przyjmując zasadę, że każde "wyrażenie" poprzedzone kwantryfikatorem należy umieścić w nawiasie)

Jan Kraszewski
Administrator
Administrator
Posty: 26928
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4503 razy

Hierarchia symboli logicznych

Post autor: Jan Kraszewski » 3 wrz 2011, o 00:26

Tu wchodzisz na teren nawiasowania kwantyfikatorów. Ja bym napisał tak:

\(\displaystyle{ p\land(\forall x)\varphi(x)}\),

ale to kwestia pewnych nawyków. Z podanych przez Ciebie dwóch możliwości zdecydowanie wystarczy

\(\displaystyle{ p \wedge \forall x (\varphi (x))}\),

choć zupełnie nie wiem, po co brać w nawias \(\displaystyle{ \varphi (x)}\). Ten nawias powinien tam się pojawić dopiero wtedy, gdy w miejsce \(\displaystyle{ \varphi (x)}\) chciałbyś wpisać dłuższą formułę.

A konwencje nawiasowania kwantyfikatorów są różne.

JK

tatteredspire
Użytkownik
Użytkownik
Posty: 716
Rejestracja: 2 wrz 2009, o 21:59
Płeć: Mężczyzna
Podziękował: 83 razy
Pomógł: 74 razy

Hierarchia symboli logicznych

Post autor: tatteredspire » 3 wrz 2011, o 00:33

Tam w \(\displaystyle{ \forall x \ \varphi (x)}\) rzeczywiście nawias wydaje się zbędny.

Dziękuję za wyjaśnienia.

ODPOWIEDZ