obliczanie asymptot

Wyznaczanie granic funkcji. Ciągłość w punkcie i ciągłość jednostajna na przedziale. Reguła de l'Hospitala.
lukrecja134
Użytkownik
Użytkownik
Posty: 7
Rejestracja: 1 wrz 2011, o 23:26
Płeć: Kobieta
Lokalizacja: aaaaa
Podziękował: 3 razy

obliczanie asymptot

Post autor: lukrecja134 » 1 wrz 2011, o 23:40

\(\displaystyle{ \ln\left(e+ \frac{1}{x}\right)}\)

Proszę o pomoc w obliczeniu asymptot.
Ostatnio zmieniony 1 wrz 2011, o 23:42 przez szw1710, łącznie zmieniany 2 razy.
Powód: Pierwszy post - daruję brak LaTeX-a. Proszę wejść do edycji i zobaczyć poprawny kod.

Lbubsazob
Gość Specjalny
Gość Specjalny
Posty: 4669
Rejestracja: 17 maja 2009, o 13:40
Płeć: Kobieta
Lokalizacja: Gdańsk
Podziękował: 124 razy
Pomógł: 978 razy

obliczanie asymptot

Post autor: Lbubsazob » 1 wrz 2011, o 23:44

No to zacznijmy od pionowej.
Policz granicę \(\displaystyle{ \lim_{x \to 0} \ln\left( e+ \frac{1}{x} \right)}\) i jeżeli jest równa \(\displaystyle{ \pm \infty}\), to \(\displaystyle{ x=0}\) jest asymptotą pionową.-- 1 wrz 2011, o 23:51 --I jeszcze trzeba w drugim punkcie policzyć granicę, \(\displaystyle{ x=- \frac{1}{e}}\).

lukrecja134
Użytkownik
Użytkownik
Posty: 7
Rejestracja: 1 wrz 2011, o 23:26
Płeć: Kobieta
Lokalizacja: aaaaa
Podziękował: 3 razy

obliczanie asymptot

Post autor: lukrecja134 » 1 wrz 2011, o 23:56

nie wychodzi, a nie wiem co robie zle ;/ bardzo prosze o rozwiazanie całego zad

Majeskas
Użytkownik
Użytkownik
Posty: 1455
Rejestracja: 14 gru 2007, o 14:36
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 49 razy
Pomógł: 198 razy

obliczanie asymptot

Post autor: Majeskas » 1 wrz 2011, o 23:59

Ta funkcja nie ma granicy w zerze. Ma tam granicę prawostronną. Ja bym zaczął od ustalenia dziedziny:


\(\displaystyle{ \begin{cases} x \neq 0 \\ e+ \frac{1}{x}>0 \end{cases}}\)


\(\displaystyle{ ex^2+x>0}\)


\(\displaystyle{ x\left( ex+1\right)>0}\)


\(\displaystyle{ D_f=\left( - \infty ,- \frac{1}{e} \right) \cup \mathbb{R}_+}\)


Teraz oblicz granice na krańcach określoności dziedziny. tzn.:

\(\displaystyle{ \lim_{x \to - \infty }f\left( x\right)}\)

\(\displaystyle{ \lim_{x \to - \frac{1}{e}^- }f\left( x\right)}\)

\(\displaystyle{ \lim_{x \to 0^+ }f\left( x\right)}\)

\(\displaystyle{ \lim_{x \to + \infty }f\left( x\right)}\)

-- 2 września 2011, 00:04 --

\(\displaystyle{ \lim_{x \to - \infty } \ln \left( e+ \frac{1}{x} \right)=\ln \left( e+0\right)=1}\)


\(\displaystyle{ \lim_{x \to - \frac{1}{e}^- } \ln \left( e+ \frac{1}{x} \right)=\ln \left( e-e^-)=\ln 0^+=- \infty}\)



\(\displaystyle{ \lim_{x \to 0^+ } \ln \left( e+ \frac{1}{x} \right)=\ln \left( e+ \infty )=+ \infty}\)



\(\displaystyle{ \lim_{x \to + \infty } \ln \left( e+ \frac{1}{x} \right)=\ln \left( e+0\right)=1}\)
Ostatnio zmieniony 2 wrz 2011, o 00:19 przez Majeskas, łącznie zmieniany 1 raz.

Lbubsazob
Gość Specjalny
Gość Specjalny
Posty: 4669
Rejestracja: 17 maja 2009, o 13:40
Płeć: Kobieta
Lokalizacja: Gdańsk
Podziękował: 124 razy
Pomógł: 978 razy

obliczanie asymptot

Post autor: Lbubsazob » 2 wrz 2011, o 00:05

Majeskas pisze:Ta funkcja nie ma granicy w zerze. Ma tam granice jednostronne.
No ale przecież granice jednostronne są sobie równe:
\(\displaystyle{ \lim_{x \to 0^+} \ln\left(e+ \frac{1}{x}\right)=\infty \\ \lim_{x \to 0^-} \ln\left(e+ \frac{1}{x}\right)=\infty}\)

Majeskas
Użytkownik
Użytkownik
Posty: 1455
Rejestracja: 14 gru 2007, o 14:36
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 49 razy
Pomógł: 198 razy

obliczanie asymptot

Post autor: Majeskas » 2 wrz 2011, o 00:19

Ale spójrz na dziedzinę, którą wyznaczyłem. Ta funkcja nie jest określona w prawostronnym otoczeniu zera, ona tam nie istnieje. Ba! Nie istnieje nawet na całym przedziale \(\displaystyle{ \left[ - \frac{1}{e},0 \right]}\)

Jeśli nie przekonuje Cię dziedzina (choć powinna), wstaw sobie jakąkolwiek ujemną wartość bliską zera, to się przekonasz.

Skoro funkcja nie istnieje w lewostronnym otoczeniu zera, nie można liczyć tam granicy.-- 2 września 2011, 00:21 --Poprawiłem wcześniejszego posta, w którym napisałem, że funkcja ma w zerze granice jednostronne. Po wyznaczeniu dziedziny okazało się, że ma tylko granicę prawostronną.

Lbubsazob
Gość Specjalny
Gość Specjalny
Posty: 4669
Rejestracja: 17 maja 2009, o 13:40
Płeć: Kobieta
Lokalizacja: Gdańsk
Podziękował: 124 razy
Pomógł: 978 razy

obliczanie asymptot

Post autor: Lbubsazob » 2 wrz 2011, o 00:23

Dobra, już wiem, o co chodziło...

lukrecja134
Użytkownik
Użytkownik
Posty: 7
Rejestracja: 1 wrz 2011, o 23:26
Płeć: Kobieta
Lokalizacja: aaaaa
Podziękował: 3 razy

obliczanie asymptot

Post autor: lukrecja134 » 2 wrz 2011, o 08:06

Wielkie dzięki za pomoc

ODPOWIEDZ