Obliczyć pochodną funkcji

Różniczkowalność, pochodna funkcji. Przebieg zmienności. Zadania optymalizacyjne. Równania i nierówności z wykorzystaniem rachunku różniczkowego.
vitar
Użytkownik
Użytkownik
Posty: 136
Rejestracja: 7 gru 2008, o 13:58
Płeć: Mężczyzna
Lokalizacja: wnętrza ziemi
Podziękował: 16 razy

Obliczyć pochodną funkcji

Post autor: vitar » 30 sie 2011, o 22:24

Witam,

\(\displaystyle{ f \left( x \right) = \left[ \frac{2x+5}{3x-2} \right] ' = \frac{ \left( 2x+5 \right) ' \left( 3x-2 \right) - \left( 2x+5 \right) \left( 3x-2 \right) '}{ \left( 3x-2 \right) ^{2} } = \frac{2 \left( 3x-2 \right) -3 \left( 2x+5 \right) }{ \left( 3x-2 \right) ^{2} } = \frac{6x-4-6x-15}{ \left( 3x-2 \right) ^{2}} = \frac{-19}{ \left( 3x-2 \right) ^{2}}}\)

Nie wiem czy dobrze obliczyłem pochodną tej funkcji ?
Korzystałem ze wzoru:

\(\displaystyle{ \frac{f \left( x \right) '}{g \left( x \right) '} = \frac{f' \left( x \right) g \left( x \right) - f \left( x \right) g \left( x \right) '}{g ^{2} \left( x \right) }}\)
Ostatnio zmieniony 30 sie 2011, o 22:25 przez ares41, łącznie zmieniany 1 raz.
Powód: Skalowanie nawiasów.

aalmond
Użytkownik
Użytkownik
Posty: 2911
Rejestracja: 1 maja 2006, o 21:13
Płeć: Mężczyzna
Lokalizacja: Kraków
Pomógł: 623 razy

Obliczyć pochodną funkcji

Post autor: aalmond » 30 sie 2011, o 22:25

Dobrze.

vitar
Użytkownik
Użytkownik
Posty: 136
Rejestracja: 7 gru 2008, o 13:58
Płeć: Mężczyzna
Lokalizacja: wnętrza ziemi
Podziękował: 16 razy

Obliczyć pochodną funkcji

Post autor: vitar » 30 sie 2011, o 22:45

To była część większego planu, wyznaczenia równania stycznej do wykresu funkcji w punkcie \(\displaystyle{ 1}\) )

Korzystając ze wzoru na styczną do wykresu:

\(\displaystyle{ y - y _{0} = f'(x _{0} )(x-x _{0} )}\)

\(\displaystyle{ f'(1) = \frac{-19}{25}}\)
\(\displaystyle{ f(1) = 7}\)

\(\displaystyle{ y - 7 = \frac{-19}{25}(x-1)}\)

\(\displaystyle{ y = -\frac{19}{25}(x-1) + 7}\)

\(\displaystyle{ y = -\frac{19}{25}x+\frac{19}{25}+7}\)

\(\displaystyle{ y = -\frac{19}{25}x+\frac{194}{25}}\)

Trochę podejrzany wynik ?

Lbubsazob
Gość Specjalny
Gość Specjalny
Posty: 4669
Rejestracja: 17 maja 2009, o 13:40
Płeć: Kobieta
Lokalizacja: Gdańsk
Podziękował: 124 razy
Pomógł: 978 razy

Obliczyć pochodną funkcji

Post autor: Lbubsazob » 30 sie 2011, o 23:42

No jeżeli wyznaczyłeś \(\displaystyle{ f'(x)= \frac{-19}{\left( 3x-2\right)^2 }}\), to jakim cudem \(\displaystyle{ f'(1)=- \frac{19}{25}}\)?

vitar
Użytkownik
Użytkownik
Posty: 136
Rejestracja: 7 gru 2008, o 13:58
Płeć: Mężczyzna
Lokalizacja: wnętrza ziemi
Podziękował: 16 razy

Obliczyć pochodną funkcji

Post autor: vitar » 31 sie 2011, o 11:52

Użyłem na dole wzorów skróconego mnożenia i wyszło 25

Awatar użytkownika
ares41
Gość Specjalny
Gość Specjalny
Posty: 6499
Rejestracja: 19 sie 2010, o 08:07
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 142 razy
Pomógł: 922 razy

Obliczyć pochodną funkcji

Post autor: ares41 » 31 sie 2011, o 11:53

\(\displaystyle{ (3 \cdot 1-2)^2=25}\)

vitar
Użytkownik
Użytkownik
Posty: 136
Rejestracja: 7 gru 2008, o 13:58
Płeć: Mężczyzna
Lokalizacja: wnętrza ziemi
Podziękował: 16 razy

Obliczyć pochodną funkcji

Post autor: vitar » 31 sie 2011, o 12:08

najpierw podstawiłem 1, później użyłem wzorów

Awatar użytkownika
ares41
Gość Specjalny
Gość Specjalny
Posty: 6499
Rejestracja: 19 sie 2010, o 08:07
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 142 razy
Pomógł: 922 razy

Obliczyć pochodną funkcji

Post autor: ares41 » 31 sie 2011, o 12:10

Czyli źle użyłeś wzorów, bo to na pewno nie jest \(\displaystyle{ 25}\)
A tak w ogóle to po co Ci tutaj te wzory?

vitar
Użytkownik
Użytkownik
Posty: 136
Rejestracja: 7 gru 2008, o 13:58
Płeć: Mężczyzna
Lokalizacja: wnętrza ziemi
Podziękował: 16 razy

Obliczyć pochodną funkcji

Post autor: vitar » 31 sie 2011, o 12:21

\(\displaystyle{ (3x-2) ^{2} = 3 ^{2} - 2 \cdot 3 \cdot (-2) + 2 ^{2} = 9 + 12 + 4 = 25}\)
A tak w ogóle to po co Ci tutaj te wzory?
nie wiem, tak mnie uczono, że skoro jest coś takiego to używa się wzorów ;]
Ostatnio zmieniony 31 sie 2011, o 12:22 przez ares41, łącznie zmieniany 1 raz.
Powód: Symbol mnożenia to \cdot

Awatar użytkownika
ares41
Gość Specjalny
Gość Specjalny
Posty: 6499
Rejestracja: 19 sie 2010, o 08:07
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 142 razy
Pomógł: 922 razy

Obliczyć pochodną funkcji

Post autor: ares41 » 31 sie 2011, o 12:28

Ehhh.
Wzór skróconego mnożenia, o którym piszesz to:
\(\displaystyle{ (a-b)^2=a^2-2ab+b^2}\)
u Ciebie
\(\displaystyle{ a=3\\ b=2}\)
....
vitar pisze:nie wiem, tak mnie uczono, że skoro jest coś takiego to używa się wzorów ;]
Brawo! Czasami przed użyciem wzoru warto pomyśleć, czy on rzeczywiście skróci mnożenie....

vitar
Użytkownik
Użytkownik
Posty: 136
Rejestracja: 7 gru 2008, o 13:58
Płeć: Mężczyzna
Lokalizacja: wnętrza ziemi
Podziękował: 16 razy

Obliczyć pochodną funkcji

Post autor: vitar » 31 sie 2011, o 14:06

Wzór skróconego mnożenia, o którym piszesz to:
no tak, popełniłem błąd dodając minus, zapomniałem o tym

\(\displaystyle{ f'(1) = -19}\)

\(\displaystyle{ f(1) = 7}\)

\(\displaystyle{ y - 7 = -19(x-1)}\)

\(\displaystyle{ y -7 = -19x + 19}\)

\(\displaystyle{ y = -19x + 26}\)

Wygląda nieźle, całkiem całkiem, czy mój sposób liczenia równania stycznej wraz z wynikiem jest dobry ?

Awatar użytkownika
ares41
Gość Specjalny
Gość Specjalny
Posty: 6499
Rejestracja: 19 sie 2010, o 08:07
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 142 razy
Pomógł: 922 razy

Obliczyć pochodną funkcji

Post autor: ares41 » 31 sie 2011, o 14:12

Wygląda Ok.

ODPOWIEDZ