Jakie jest prawdopodobieństwo?

Definicja klasyczna. Prawdopodobieństwo warunkowe i całkowite. Zmienne losowe i ich parametry. Niezależność. Prawa wielkich liczb oraz centralne twierdzenia graniczne i ich zastosowania.
kamil13151
Gość Specjalny
Gość Specjalny
Posty: 5019
Rejestracja: 28 wrz 2009, o 16:53
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 459 razy
Pomógł: 912 razy

Jakie jest prawdopodobieństwo?

Post autor: kamil13151 » 30 sie 2011, o 20:27

W sklepie zoologicznym są dwie myszy - biała i szara.
a) Wiadomo, że co najmniej jedna z myszy jest samcem. Jakie jest prawdopodobieństwo, że obie myszy są samcami?
b) Sprzedawca powiedział, że biała mysz jest samcem. Jakie jest prawdopodobieństwo, że obie są samcami?

To jest zadania z początków prawdopodobieństwa, także klasyczna definicja prawdopodobieństwa może być tylko użyta. Trzeba na logikę wziąć te zadanie, lecz wg. odpowiedzi błędnie mi to idzie. Prosiłbym o wytłumaczenie. Dziękuje

jetix
Użytkownik
Użytkownik
Posty: 97
Rejestracja: 29 maja 2010, o 14:46
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 2 razy
Pomógł: 14 razy

Jakie jest prawdopodobieństwo?

Post autor: jetix » 30 sie 2011, o 21:09

1.

\(\displaystyle{ \Omega=\{\omega_{1},\omega_{2},\omega_{3},\omega_{4}\}}\)

Zdarzenia elementarne:

\(\displaystyle{ \omega_{1}}\) - żadna z dwóch myszy nie jest samcem

\(\displaystyle{ \omega_{2}}\) - biała mysz jest samcem, szara samicą

\(\displaystyle{ \omega_{3}}\) - biała mysz jest samicą, szara samcem

\(\displaystyle{ \omega_{4}}\) - obie myszy są samcami

\(\displaystyle{ \bar{\Omega}=4}\)

Zdarzenia:

\(\displaystyle{ A=\{\omega_{4}\}}\) - obie myszy są samcami,

\(\displaystyle{ \bar{A}=1}\)

\(\displaystyle{ P(A)=\frac{\bar{A}}{\bar{\Omega}}=\frac{1}{4}}\)

\(\displaystyle{ B=\{\omega_{2},\omega_{3},\omega_{4}\}}\) - co najmniej jedna z myszy jest samcem,

\(\displaystyle{ \bar{B}=3}\)

\(\displaystyle{ P(B)=\frac{\bar{B}}{\bar{\Omega}}=\frac{3}{4}}\)

Ty musisz policzyć prawdopodobieństwo:

\(\displaystyle{ P(A|B)=}\)?

\(\displaystyle{ P(A|B)=\frac{P(A\cap B)}{P(B)}=\frac{P(A)}{P(B)}=\frac{1}{4} \cdot \frac{4}{3}=\frac{1}{3}}\)

Odpowiedź: Prawdopodobieństwo, że obie myszy są samcami wynosi \(\displaystyle{ P(A|B)=\frac{1}{3}}\).

Spróbuj sam zrobić 2.

Pozdrawiam
Ostatnio zmieniony 30 sie 2011, o 21:51 przez ares41, łącznie zmieniany 1 raz.
Powód: Symbol mnożenia to \cdot

kamil13151
Gość Specjalny
Gość Specjalny
Posty: 5019
Rejestracja: 28 wrz 2009, o 16:53
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 459 razy
Pomógł: 912 razy

Jakie jest prawdopodobieństwo?

Post autor: kamil13151 » 30 sie 2011, o 21:20

Do dyspozycji mam tylko prawdopodobieństwo zdarzenia losowego, czyli wzorek: \(\displaystyle{ P(A)= \frac{n_A}{N}}\), więc nie mogę zrobić tak jak Ty...

jetix
Użytkownik
Użytkownik
Posty: 97
Rejestracja: 29 maja 2010, o 14:46
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 2 razy
Pomógł: 14 razy

Jakie jest prawdopodobieństwo?

Post autor: jetix » 30 sie 2011, o 21:39

Nie możesz skorzystać z definicji prawdopodobieństwa warunkowego? Sprawdź

kamil13151
Gość Specjalny
Gość Specjalny
Posty: 5019
Rejestracja: 28 wrz 2009, o 16:53
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 459 razy
Pomógł: 912 razy

Jakie jest prawdopodobieństwo?

Post autor: kamil13151 » 30 sie 2011, o 21:41

Nie, prawdopodobieństwo warunkowe mam parę tematów dalej. To jest pierwszy temat i tylko ten wzór co wyżej, niestety...

jetix
Użytkownik
Użytkownik
Posty: 97
Rejestracja: 29 maja 2010, o 14:46
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 2 razy
Pomógł: 14 razy

Jakie jest prawdopodobieństwo?

Post autor: jetix » 30 sie 2011, o 21:43

A przynajmniej odpowiedź się zgadza?

Nie wiem jak zrobić to zadanie tylko za pomocą Twojego wzoru, który de facto też stosuję w moim rozumowaniu <bezradny> Musisz poczekać aż pomoże Ci ktoś mądrzejszy ode mnie

kamil13151
Gość Specjalny
Gość Specjalny
Posty: 5019
Rejestracja: 28 wrz 2009, o 16:53
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 459 razy
Pomógł: 912 razy

Jakie jest prawdopodobieństwo?

Post autor: kamil13151 » 30 sie 2011, o 21:48

Tak, odpowiedź do podpunktu a) podałeś prawidłową.

Awatar użytkownika
ares41
Gość Specjalny
Gość Specjalny
Posty: 6499
Rejestracja: 19 sie 2010, o 08:07
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 142 razy
Pomógł: 922 razy

Jakie jest prawdopodobieństwo?

Post autor: ares41 » 30 sie 2011, o 21:57

Nieco szybsza wersja pierwszego:
Wiadomo, że co najmniej jedna z myszy jest samcem, zatem możliwe są następujące przypadki:
\(\displaystyle{ \omega_1}\) - tylko biała to samiec
\(\displaystyle{ \omega_2}\) - tylko szara to samiec
\(\displaystyle{ \omega_3}\) - obie są samcami
Zatem:
\(\displaystyle{ \Omega=\{\omega_1,\omega_3,\omega_3\}\\ A=\{\omega_3\}\\P(A)= \frac{\overline{\overline{A}}}{\overline{\overline{\Omega}}} = \frac{1}{3}}\)

jetix
Użytkownik
Użytkownik
Posty: 97
Rejestracja: 29 maja 2010, o 14:46
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 2 razy
Pomógł: 14 razy

Jakie jest prawdopodobieństwo?

Post autor: jetix » 30 sie 2011, o 22:03

I znalazł się szybko mądrzejszy. Przy okazji się czegoś nauczę. Dzięki

kamil13151
Gość Specjalny
Gość Specjalny
Posty: 5019
Rejestracja: 28 wrz 2009, o 16:53
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 459 razy
Pomógł: 912 razy

Jakie jest prawdopodobieństwo?

Post autor: kamil13151 » 30 sie 2011, o 22:10

Dziękuje bardzo Mam tu jeszcze jeden malutki problem:

Z zestawu kostek do gry w domino losujemy jedną kostkę. Oblicz prawdopodobieństwo tego, że:
a) na obu częściach wylosowanej kostki jest taka sama liczba oczek
jak gramy:    
Wg. mnie powinno to być: \(\displaystyle{ \frac{6}{28}}\), wg książki \(\displaystyle{ \frac{1}{4} = \frac{7}{28}}\). Czy oni wzięli po uwagę pustą kostkę domina, ale przecież tam oczek nie ma?

Awatar użytkownika
ares41
Gość Specjalny
Gość Specjalny
Posty: 6499
Rejestracja: 19 sie 2010, o 08:07
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 142 razy
Pomógł: 922 razy

Jakie jest prawdopodobieństwo?

Post autor: ares41 » 30 sie 2011, o 22:12

Wygląda na to, że tak. Ma być taka sama liczba oczek, a zero to też liczba . Po prostu chodziło im o sytuację, w której obie części są jednakowe, a taka występuje siedem razy.

kamil13151
Gość Specjalny
Gość Specjalny
Posty: 5019
Rejestracja: 28 wrz 2009, o 16:53
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 459 razy
Pomógł: 912 razy

Jakie jest prawdopodobieństwo?

Post autor: kamil13151 » 30 sie 2011, o 22:29

Dzięki . No to ostatnie zadanie na dzisiaj.

Na kartce narysowano linie pionowe i poziome tak, że odległość między sąsiednimi liniami są równe \(\displaystyle{ a}\) (zob. rysunek). Na kartkę rzucamy monetę o średnicy \(\displaystyle{ a}\) tak, że środek monety leży w jakiejś kratce. Jakie jest prawdopodobieństwo, że moneta zakryje punkt kratowy (wierzchołek któregoś z kwadratów)?
Wskazówka: Zaznacz w jednym z kwadratów zbiór tych punktów, w których powinien się znaleźć środek monety, aby moneta przykryła punkt kratowy.

Obrazek: http://img20.imageshack.us/img20/156/dsc02492m.jpg

Awatar użytkownika
Igor V
Użytkownik
Użytkownik
Posty: 1605
Rejestracja: 16 lut 2011, o 16:48
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 18 razy
Pomógł: 603 razy

Jakie jest prawdopodobieństwo?

Post autor: Igor V » 30 sie 2011, o 22:51

Trzeba pewnie spróbować pokombinować z polem (prawdopodobieństwo jako stosunek pól).

zedd5
Użytkownik
Użytkownik
Posty: 17
Rejestracja: 12 mar 2008, o 00:51
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 3 razy
Pomógł: 1 raz

Jakie jest prawdopodobieństwo?

Post autor: zedd5 » 31 sie 2011, o 15:23

Chwila, moment.
Dlaczego wychodzą tak dziwne wyniki z tymi myszami?

a) Wiadomo, że jedna mysz jest samcem, a druga nie wiadomo. Czy druga jest, czy nie jest to jest pół na pól, czyli 0,5.

b) Podobnie - biała jest samcem i to zależy tylko od tej drugiej czy obie są samcami, czy nie.

Gdzie robię błąd?

jetix
Użytkownik
Użytkownik
Posty: 97
Rejestracja: 29 maja 2010, o 14:46
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 2 razy
Pomógł: 14 razy

Jakie jest prawdopodobieństwo?

Post autor: jetix » 31 sie 2011, o 15:54

zedd5 pisze: a) Wiadomo, że jedna mysz jest samcem, a druga nie wiadomo. Czy druga jest, czy nie jest to jest pół na pól, czyli 0,5.
Wiadomo, że co najmniej jedna mysz jest samcem a nie dokładnie jedna.
zedd5 pisze: b) Podobnie - biała jest samcem i to zależy tylko od tej drugiej czy obie są samcami, czy nie.
W tym przypadku to czy obie są samcami zależy tylko od drugiej.

ODPOWIEDZ