całka nieoznaczona

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
awers
Użytkownik
Użytkownik
Posty: 43
Rejestracja: 10 lut 2011, o 15:04
Płeć: Mężczyzna
Lokalizacja: Krętoszyno
Podziękował: 7 razy

całka nieoznaczona

Post autor: awers » 30 sie 2011, o 17:49

\(\displaystyle{ \int\frac{2\cdot x^{2} - 3\cdot x + 1}{\sqrt{x}}}\) Tu robie podstawienie \(\displaystyle{ \sqrt{x}= t}\)
\(\displaystyle{ \frac{1}{2\sqrt{x}}dx=dt}\)

\(\displaystyle{ \int\frac{2\cdot t^{4} - 3\cdot t^{2} + 1}{t} =}\)
\(\displaystyle{ =\int2\cdot t^{3} - 3\cdot t + \frac{1}{t}=}\)
\(\displaystyle{ =\frac{1}{2}\cdot x^{2} - \frac{3}{2}\cdot x + \ln |\sqrt x| + C}\)

Chyba coś źle zrobiłem to podstawienie

bartek118
Gość Specjalny
Gość Specjalny
Posty: 5970
Rejestracja: 28 lut 2010, o 19:45
Płeć: Mężczyzna
Lokalizacja: Toruń
Podziękował: 15 razy
Pomógł: 1251 razy

całka nieoznaczona

Post autor: bartek118 » 30 sie 2011, o 17:57

Zrób to bez podstawień, bo źle podstawiasz:

\(\displaystyle{ \int\frac{2\cdot x^{2} - 3\cdot x + 1}{\sqrt{x}} \mbox{d}x = \int 2x^{\frac{3}{2}}-3x^{\frac{1}{2}} + x^{-\frac{1}{2}} \mbox{d}x}\)

Teraz rozbij na trzy całki i masz gotowe wzory

awers
Użytkownik
Użytkownik
Posty: 43
Rejestracja: 10 lut 2011, o 15:04
Płeć: Mężczyzna
Lokalizacja: Krętoszyno
Podziękował: 7 razy

całka nieoznaczona

Post autor: awers » 30 sie 2011, o 18:10

\(\displaystyle{ \frac {4}{5}\comt x^{\frac{5}{2}} - 2\comt x^{\frac{3}{2}} + 2\comt x^{\frac{1}{2}}}\)
Tak wyszło po podstawieniu?

bartek118
Gość Specjalny
Gość Specjalny
Posty: 5970
Rejestracja: 28 lut 2010, o 19:45
Płeć: Mężczyzna
Lokalizacja: Toruń
Podziękował: 15 razy
Pomógł: 1251 razy

całka nieoznaczona

Post autor: bartek118 » 30 sie 2011, o 18:16

Tak, to jest poprawny wynik, jeszcze plus stała na końcu, i to było bez podstawienia

ODPOWIEDZ