różniczkowalność funkcji

Różniczkowalność, pochodna funkcji. Przebieg zmienności. Zadania optymalizacyjne. Równania i nierówności z wykorzystaniem rachunku różniczkowego.
miodzio1988

różniczkowalność funkcji

Post autor: miodzio1988 » 26 sie 2011, o 14:16

W takim razie tak możemy zostawić tą granicę
Nie. Masz policzyć tę granicę.
Jak kawałkami?
No z kawałkami tej funkcji przechodzisz do granicy co najczęściej powoduje błedy

patricia__88
Użytkownik
Użytkownik
Posty: 367
Rejestracja: 15 gru 2010, o 12:27
Płeć: Kobieta
Lokalizacja: podkarpacie
Podziękował: 3 razy

różniczkowalność funkcji

Post autor: patricia__88 » 26 sie 2011, o 14:49

A czy mogę tutaj skorzystać ze współrzędnych biegunowych, czy raczej nic mi to nie da? Bo wówczas wyjdzie \(\displaystyle{ \lim_{(x,y)\to\ (0,0)} \frac{2 \cos \varphi}{r}}\)

miodzio1988

różniczkowalność funkcji

Post autor: miodzio1988 » 26 sie 2011, o 14:50

\(\displaystyle{ \lim_{(x,y)\to\ (0,0)}}\)

Po takim przejściu Ci taka granica zostaje?

patricia__88
Użytkownik
Użytkownik
Posty: 367
Rejestracja: 15 gru 2010, o 12:27
Płeć: Kobieta
Lokalizacja: podkarpacie
Podziękował: 3 razy

różniczkowalność funkcji

Post autor: patricia__88 » 26 sie 2011, o 14:53

No jak wstawimy \(\displaystyle{ x=r \cos \varphi}\) i \(\displaystyle{ y=r \sin \varphi}\) to tak mi wyjdzie

miodzio1988

różniczkowalność funkcji

Post autor: miodzio1988 » 26 sie 2011, o 14:55

No nie. Po podstawieniu granica się zmienia.

Ale można to inaczej pewnie zrobić. Podciągi może?

patricia__88
Użytkownik
Użytkownik
Posty: 367
Rejestracja: 15 gru 2010, o 12:27
Płeć: Kobieta
Lokalizacja: podkarpacie
Podziękował: 3 razy

różniczkowalność funkcji

Post autor: patricia__88 » 26 sie 2011, o 14:57

hmm przez podciągi? ale jak?

miodzio1988

różniczkowalność funkcji

Post autor: miodzio1988 » 26 sie 2011, o 14:58

Nie dobijaj mnie młoda. Tak jak to zwykle się robi przez podciągi. Wybierasz jakieś i pokazujesz, że granice są różne. Wystarczy nawet, że jeden znajdziesz dla ktorego granica jest różna od zera

patricia__88
Użytkownik
Użytkownik
Posty: 367
Rejestracja: 15 gru 2010, o 12:27
Płeć: Kobieta
Lokalizacja: podkarpacie
Podziękował: 3 razy

różniczkowalność funkcji

Post autor: patricia__88 » 26 sie 2011, o 15:01

Młoda? O ile dobrze widze to jesteśmy z tego samego rocznika, więc daruj sobie takie odzywki. "Tak jak to się zwykle robi przez podciągi" no bardzo przydatna informacja.

miodzio1988

różniczkowalność funkcji

Post autor: miodzio1988 » 26 sie 2011, o 15:03

Jak ktoś robi całki potrójne, bada różniczkowalność funkcji dwóch zmiennych, a nie potrafi liczyć prostych granic no to ciężko inaczej to skomentować.

Zatem masz do powtórzenia granice funkcji. Do dzieła. Sesja już niedługo

patricia__88
Użytkownik
Użytkownik
Posty: 367
Rejestracja: 15 gru 2010, o 12:27
Płeć: Kobieta
Lokalizacja: podkarpacie
Podziękował: 3 razy

różniczkowalność funkcji

Post autor: patricia__88 » 26 sie 2011, o 15:10

\(\displaystyle{ \lim_{(x,y)\to\ (0,0)} \frac{-2x}{x^2+y^2} \\ \frac{-2x}{x^2+y^2} \ < \ \frac{-2x}{x^2} < \frac{-2x^2}{x^2}=-2}\)
Tak może być?

miodzio1988

różniczkowalność funkcji

Post autor: miodzio1988 » 26 sie 2011, o 15:12

I co " coś takiego" CI daje? Napisz nam konkretnie
Jeśli nie to zawsze masz super podpowiedź:
Zatem masz do powtórzenia granice funkcji. Do dzieła. Sesja już niedługo

patricia__88
Użytkownik
Użytkownik
Posty: 367
Rejestracja: 15 gru 2010, o 12:27
Płeć: Kobieta
Lokalizacja: podkarpacie
Podziękował: 3 razy

różniczkowalność funkcji

Post autor: patricia__88 » 26 sie 2011, o 15:15

"takie cos ' mi daje to, ze skoro większa granica jest skonczona, to mniejsza rowniez, bo zapewne o to ci chodzilo majac na mysli "podciągi"

miodzio1988

różniczkowalność funkcji

Post autor: miodzio1988 » 26 sie 2011, o 15:17

Jeśli to jest twoim zdaniem podciąg to proponuję cofnąć się do pierwszego roku.

Definicja.

http://pl.wikipedia.org/wiki/Podci%C4%8 ... ematyka%29

patricia__88
Użytkownik
Użytkownik
Posty: 367
Rejestracja: 15 gru 2010, o 12:27
Płeć: Kobieta
Lokalizacja: podkarpacie
Podziękował: 3 razy

różniczkowalność funkcji

Post autor: patricia__88 » 26 sie 2011, o 15:20

Przydałoby się coś takiego jak ostrzeżenia dla moderatorów.Bo Tobie by sie w tym momencie przydało!!! Sam nie potrafi pomóc i jeszcze obraża!

miodzio1988

różniczkowalność funkcji

Post autor: miodzio1988 » 26 sie 2011, o 15:22

1) Nie jestem moderatorem

2)
To nie jest obraza:
Jeśli to jest twoim zdaniem podciąg to proponuję cofnąć się do pierwszego roku.
Masz braki z pierwszego roku jeszcze więc proponuję nadrobić te braki. Nie ma co się oburzać.

259360.htm#p4760625
granica funkcji dwóch zmiennych
wpisałem w naszą wyszukiwarkę. Ciężko nie było, nie?

ODPOWIEDZ