punkty stacjonarne funkcji dwóch zmiennych

Różniczkowalność, pochodna funkcji. Przebieg zmienności. Zadania optymalizacyjne. Równania i nierówności z wykorzystaniem rachunku różniczkowego.
Voltago
Użytkownik
Użytkownik
Posty: 33
Rejestracja: 31 paź 2010, o 10:04
Płeć: Mężczyzna
Lokalizacja: bydgoszcz
Podziękował: 8 razy

punkty stacjonarne funkcji dwóch zmiennych

Post autor: Voltago » 24 sie 2011, o 13:04

Mam wyznaczyć pkty stacjonarne i określić czy funkcja ma ekstrema w punktach \(\displaystyle{ (0,2) \text { i }(0,0)}\).
\(\displaystyle{ f(x,y)=(4x- x^{2}) y^{2}}\)

Liczę pochodne
\(\displaystyle{ \frac{df}{dx}=4 y^{2}-2x y^{2} \\ \frac{df}{dy}=8xy-2y x^{2}}\)

Przyrównuje je do zera
\(\displaystyle{ 4 y^{2}-2x y^{2}=0 \\ 8xy-2y x^{2}=0}\)

i tu pojawia się pierwszy problem
\(\displaystyle{ 2 y^{2}(2-x)=0 \\ 2y(4x- x^{2})=0}\)

wydaje mi sie ze z tego układu w ogóle nie można odczytać żadnych punktów
chyba, że \(\displaystyle{ y=0}\) a \(\displaystyle{ x \in R}\)?
W takim razie co dalej?
Ostatnio zmieniony 24 sie 2011, o 13:05 przez ares41, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.

miodzio1988

punkty stacjonarne funkcji dwóch zmiennych

Post autor: miodzio1988 » 24 sie 2011, o 13:06

Dalej warunek dostateczny sprawdzasz.

Warunek konieczny ma zachodzić dla dwóch podanych punktów. Zachodzi?

Voltago
Użytkownik
Użytkownik
Posty: 33
Rejestracja: 31 paź 2010, o 10:04
Płeć: Mężczyzna
Lokalizacja: bydgoszcz
Podziękował: 8 razy

punkty stacjonarne funkcji dwóch zmiennych

Post autor: Voltago » 24 sie 2011, o 13:19

Żeby sprawdzić warunek dostateczny muszę mieć konkretny punkt, przynajmniej tak mnie uczono.
Ostatnio zmieniony 24 sie 2011, o 13:21 przez Voltago, łącznie zmieniany 1 raz.

miodzio1988

punkty stacjonarne funkcji dwóch zmiennych

Post autor: miodzio1988 » 24 sie 2011, o 13:21

Żeby sprawdzić warunek dostateczny muszę mieć konkretny punkt, przynajmniej tak mnie uczono.
Masz dwa punkty tylko podane w treści zadania.
Dla dwóch podanych w zadaniu punktów przy sprawdzaniu warunku dostatecznego wyznaczniki wychodzą 0 i -256
Jeden z tych punktów nawet warunku koniecznego nie spełnia

Voltago
Użytkownik
Użytkownik
Posty: 33
Rejestracja: 31 paź 2010, o 10:04
Płeć: Mężczyzna
Lokalizacja: bydgoszcz
Podziękował: 8 razy

punkty stacjonarne funkcji dwóch zmiennych

Post autor: Voltago » 24 sie 2011, o 13:33

Czekaj czekaj bo sie zamotałem.
Sprawdzam warunek konieczny dla podanych w zadaniu:
\(\displaystyle{ f'_x=f'_y=0}\)
1) \(\displaystyle{ (0,2)}\)
wychodzi \(\displaystyle{ 8=0=0}\) <- nie bangla
2) \(\displaystyle{ (0,0)}\)
\(\displaystyle{ 0=0=0}\) <- warunek konieczny spełniony

sprawdzam warunek dostateczny

\(\displaystyle{ W(0,0)=0}\) <- wszystko sie zeruje, nie spełniony bo ma być \(\displaystyle{ >0}\)

Punkty z treści nie pasują ale to tylko połowa zadania.
Mam wyznaczyć punkty stacjonarne więc wracam do swojego układu równań.

\(\displaystyle{ 2 y^{2}(2-x)=0}\)
\(\displaystyle{ 2y(4x- x^{2})=0}\)
wydaje mi sie ze z tego układu w ogóle nie można odczytać żadnych punktów tylko, że \(\displaystyle{ y=0}\)
W takim razie co dalej?
Ostatnio zmieniony 24 sie 2011, o 13:38 przez , łącznie zmieniany 2 razy.
Powód: Poprawa wiadomości.

miodzio1988

punkty stacjonarne funkcji dwóch zmiennych

Post autor: miodzio1988 » 24 sie 2011, o 13:39

\(\displaystyle{ y=0}\) to \(\displaystyle{ x}\) mamy dowolny. I tak to trzeba będzie wstawić do macierzy

Voltago
Użytkownik
Użytkownik
Posty: 33
Rejestracja: 31 paź 2010, o 10:04
Płeć: Mężczyzna
Lokalizacja: bydgoszcz
Podziękował: 8 razy

punkty stacjonarne funkcji dwóch zmiennych

Post autor: Voltago » 24 sie 2011, o 13:43

Czyli mam wstawić X jaki tylko chce tak żeby mi ładnie wyszło?

miodzio1988

punkty stacjonarne funkcji dwóch zmiennych

Post autor: miodzio1988 » 24 sie 2011, o 13:45

Nie. Masz wstawić \(\displaystyle{ x}\) do macierzy jako niewiadomą . I ten \(\displaystyle{ x}\) wyznaczymy

Voltago
Użytkownik
Użytkownik
Posty: 33
Rejestracja: 31 paź 2010, o 10:04
Płeć: Mężczyzna
Lokalizacja: bydgoszcz
Podziękował: 8 razy

punkty stacjonarne funkcji dwóch zmiennych

Post autor: Voltago » 24 sie 2011, o 14:07

Żarty sobie robisz?:P Nie wiem jaki mam otrzymać wyznacznik (chyba, że założę >0 tak by były spełnione warunki) więc jak mam obliczyć x?

\(\displaystyle{ W(x,y) = \begin{vmatrix} -2y ^{2} &8y-4xy\\8y-4xy&8x-2x ^{2} \\\end{vmatrix}}\)
podstawiam
\(\displaystyle{ W(x,0) = \begin{vmatrix} 0 &0\\0&8x-2x ^{2} \\\end{vmatrix}}\)

1) W=0 obojętniej co podstawie pod x
2) nawet gdyby nie wychodziło i tak nie miał bym jak obliczyć x, bo niby z czego?
(chyba, że nie wiem o jakimś warunku niekoniecznym albo gdzieś popełniłem błąd ale sprawdzałem obliczenia już kilka razy)

miodzio1988

punkty stacjonarne funkcji dwóch zmiennych

Post autor: miodzio1988 » 24 sie 2011, o 14:09

Żarty sobie robisz?:P
Nie.
Nie wiem jaki mam otrzymać wyznacznik (chyba, że założę >0 tak by były spełnione warunki) więc jak mam obliczyć x?
No właśnie zakładając, że wyznacznik jest większy od zera.

No to zostaje Ci z definicji zbadać czy w tym punktach jest ekstremum czy nie. Innego wyjścia nie ma

aalmond
Użytkownik
Użytkownik
Posty: 2911
Rejestracja: 1 maja 2006, o 21:13
Płeć: Mężczyzna
Lokalizacja: Kraków
Pomógł: 623 razy

punkty stacjonarne funkcji dwóch zmiennych

Post autor: aalmond » 24 sie 2011, o 14:10

Rozważ istnienie minimum (maksimum) niewłaściwego.

ODPOWIEDZ