oreśl liczbę rozwiązań równania w zależnosci od parametru

Zagadnienia dot. funkcji kwadratowej. RÓWNANIA I NIERÓWNOŚCI kwadratowe i pierwiastkowe. Układy równań stopnia 2.
henryy1991
Użytkownik
Użytkownik
Posty: 14
Rejestracja: 13 sie 2011, o 22:40
Płeć: Mężczyzna
Lokalizacja: Chrzanów
Podziękował: 1 raz

oreśl liczbę rozwiązań równania w zależnosci od parametru

Post autor: henryy1991 » 23 sie 2011, o 21:34

Niby nie trudne zadanie robiąc je graficznie, ale chciałbym wiedzieć jak zrobić je algebraicznie bo jak rozwiązywałem to mi powychodziły inne wyniki niż w ksiażce.

określ liczbę rozwiązań równania \(\displaystyle{ |x^2-2x-3|=a}\) w zależności od wartości parametru a.

ja to wziąłem rozpisałem na dwa przykłady w jednym zmieniając znaki po opuszczeniu modułu i potem odjałem "a" i wyliczyłem. ale wyniki mi sie nie zgadzały. ksiazka podaje:
dla \(\displaystyle{ a \in (- \infty ;-0)}\) - brak rozw.,
dla \(\displaystyle{ a \in (4;+ \infty ) \cup \left\{ 0\right\}}\) - dwa rozw.
dla \(\displaystyle{ a=4}\) - trzy rozw,
dla \(\displaystyle{ a \in (0;4)}\) - cztery rozw.
Ostatnio zmieniony 23 sie 2011, o 21:37 przez Lbubsazob, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.

kamil13151
Gość Specjalny
Gość Specjalny
Posty: 5019
Rejestracja: 28 wrz 2009, o 16:53
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 459 razy
Pomógł: 912 razy

oreśl liczbę rozwiązań równania w zależnosci od parametru

Post autor: kamil13151 » 23 sie 2011, o 21:51

Oczywiście \(\displaystyle{ a \ge 0}\)
\(\displaystyle{ x^2-2x-3=a \vee x^2-2x-3=-a}\)

1)
\(\displaystyle{ x^2-2x-3-a=0 \Rightarrow a=-4 \\ x^2-2x-3-a>0 \Rightarrow a>-4}\)

2)
\(\displaystyle{ x^2-2x-3+a=0 \Rightarrow a=4\\ x^2-2x-3+a>0 \Rightarrow a<4}\)

3) Oddzielnie sprawdzenie kiedy \(\displaystyle{ x^2-2x-3=-(x^2-2x-3)}\), czyli dla \(\displaystyle{ a=0}\).

ODPOWIEDZ