Granica ciągu liczba e

Własności ciągów i zbieżność, obliczanie granic. Twierdzenia o zbieżności.
Giks
Użytkownik
Użytkownik
Posty: 126
Rejestracja: 24 lis 2010, o 19:42
Płeć: Mężczyzna
Lokalizacja: Iława

Granica ciągu liczba e

Post autor: Giks » 20 sie 2011, o 17:48

Jak obliczyć taką granicę ciągu:
\(\displaystyle{ \lim_{n \to \infty } \left( 1+ \frac{5}{n} \right) ^{n}}\)
Obliczałem podobne przykłady ale gdy w liczniku była \(\displaystyle{ 1}\) wtedy po odpowiednim dopasowaniu potęgi do mianownika wyjdzie coś z liczbą \(\displaystyle{ e}\) ale co zrobić gdy w liczniku jest liczba inna niż \(\displaystyle{ 1}\)?
Ostatnio zmieniony 20 sie 2011, o 17:49 przez ares41, łącznie zmieniany 1 raz.
Powód: Skalowanie nawiasów.

miodzio1988

Granica ciągu liczba e

Post autor: miodzio1988 » 20 sie 2011, o 17:50

\(\displaystyle{ \lim_{n \to \infty } \left( 1+ \frac{a}{n} \right) ^{n}=e ^{a}}\)

na forum bylo tysiąc razy to

Awatar użytkownika
ares41
Gość Specjalny
Gość Specjalny
Posty: 6499
Rejestracja: 19 sie 2010, o 08:07
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 142 razy
Pomógł: 922 razy

Granica ciągu liczba e

Post autor: ares41 » 20 sie 2011, o 17:50

Możesz z gotowego wzorku lub korzystasz z tego, że:
\(\displaystyle{ \frac{5}{n} = \frac{1}{ \frac{n}{5} }}\)

Giks
Użytkownik
Użytkownik
Posty: 126
Rejestracja: 24 lis 2010, o 19:42
Płeć: Mężczyzna
Lokalizacja: Iława

Granica ciągu liczba e

Post autor: Giks » 20 sie 2011, o 20:01

Poproszę jeszcze o pomoc w rozwiązaniu takich przykładów:
\(\displaystyle{ \lim_{n \to \infty } \left( \frac{3n-1}{3n+1}\right) ^{n+4}}\)
oraz:
\(\displaystyle{ \lim_{n \to \infty } \left( \frac{\left| 10 ^{n}n \right|} {10 ^{n} } \right)}\)

miodzio1988

Granica ciągu liczba e

Post autor: miodzio1988 » 20 sie 2011, o 20:01

Skorzystaj z definicji liczby \(\displaystyle{ e}\)

Giks
Użytkownik
Użytkownik
Posty: 126
Rejestracja: 24 lis 2010, o 19:42
Płeć: Mężczyzna
Lokalizacja: Iława

Granica ciągu liczba e

Post autor: Giks » 20 sie 2011, o 20:11

Ale jak bo jakoś ona mi nie pasuje do tych przykładów dotychczas rozwiązywałem łatwiejsze z liczbą e takie jak ten z pierwszego posta przykład...

miodzio1988

Granica ciągu liczba e

Post autor: miodzio1988 » 20 sie 2011, o 20:13

No to ja mówię, że pasuje. Proszę zatem z tej definicji skorzystać

Giks
Użytkownik
Użytkownik
Posty: 126
Rejestracja: 24 lis 2010, o 19:42
Płeć: Mężczyzna
Lokalizacja: Iława

Granica ciągu liczba e

Post autor: Giks » 20 sie 2011, o 20:34

Dobra chyba znalazłem trop do pierwszego przykładu:
\(\displaystyle{ \left( \frac{3n+1-2}{3n+1} \right)^{n+4}= \left( 1- \frac{2}{3n+1} \right) ^{n+4}}\)
Ale jak teraz dopasować tą potęgę do mianownika?

miodzio1988

Granica ciągu liczba e

Post autor: miodzio1988 » 20 sie 2011, o 20:35

ares41 pisze:Możesz z gotowego wzorku lub korzystasz z tego, że:
\(\displaystyle{ \frac{5}{n} = \frac{1}{ \frac{n}{5} }}\)
Tak jak tutaj kolega podpowiadał

Giks
Użytkownik
Użytkownik
Posty: 126
Rejestracja: 24 lis 2010, o 19:42
Płeć: Mężczyzna
Lokalizacja: Iława

Granica ciągu liczba e

Post autor: Giks » 20 sie 2011, o 21:16

Tak może być:
\(\displaystyle{ \left( 1- \frac{1}{ \frac{3n+1}{2} } \right)^{n} \cdot \left( 1- \frac{1}{ \frac{3n+1}{2} } \right) ^{4} \right)= \sqrt{\left( 1- \frac{1}{ \frac{3n+1}{2} } \right) ^{ \frac{3n+1}{2}}\div \frac{1}{\left( 1- \frac{1}{ \frac{3n+1}{2} } \right)}}=\sqrt{ \frac{1}{e} \cdot \frac{1- \frac{2}{3n+1} }{1}}= \sqrt{ \frac{ \frac{3n+1}{3n+2} }{e}}\)
yyy zamotałem chyba
Ostatnio zmieniony 20 sie 2011, o 21:29 przez ares41, łącznie zmieniany 2 razy.
Powód: Symbol mnożenia to \cdot

miodzio1988

Granica ciągu liczba e

Post autor: miodzio1988 » 20 sie 2011, o 21:23

\(\displaystyle{ \left( \frac{n+5}{n} \right)^n=\left( 1+\frac{5}{n} \right)^n=\left(\left( 1+\frac{5}{n} \right)^{ \frac{n}{5}} \right)^5}\)

Na identycznej zasadzie u siebie to zrób

Giks
Użytkownik
Użytkownik
Posty: 126
Rejestracja: 24 lis 2010, o 19:42
Płeć: Mężczyzna
Lokalizacja: Iława

Granica ciągu liczba e

Post autor: Giks » 20 sie 2011, o 21:55

A ten przykład to też jest związany z definicją liczby e? Czy inaczej go rozwiązuje się?
\(\displaystyle{ \lim_{n \to \infty } \left( \frac{\left| 10 ^{n}n \right|} {10 ^{n} } \right)}\)
Ostatnio zmieniony 20 sie 2011, o 22:01 przez ares41, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.

miodzio1988

Granica ciągu liczba e

Post autor: miodzio1988 » 20 sie 2011, o 21:58

Ten inaczej. Moduł tutaj nie ma znaczenia i skracamy

Giks
Użytkownik
Użytkownik
Posty: 126
Rejestracja: 24 lis 2010, o 19:42
Płeć: Mężczyzna
Lokalizacja: Iława

Granica ciągu liczba e

Post autor: Giks » 20 sie 2011, o 22:02

Aha-- 20 sie 2011, o 23:03 --Tak?:
\(\displaystyle{ \left| n\right| \frac{10 ^{n} }{10 ^{n} }=\left| n\right|}\)

bakala12
Gość Specjalny
Gość Specjalny
Posty: 3044
Rejestracja: 25 mar 2010, o 15:34
Płeć: Mężczyzna
Lokalizacja: Gołąb
Podziękował: 24 razy
Pomógł: 513 razy

Granica ciągu liczba e

Post autor: bakala12 » 21 sie 2011, o 19:39

tak, ale moduł nie jest potrzebny

ODPOWIEDZ