Wykaż, że dla dowolnych liczb spełniona jest nierówność

Od funkcji homograficznych do bardziej skomplikowanych ilorazów wielomianów. Własności. RÓWNANIA I NIERÓWNOŚCI.
kamiolka28
Użytkownik
Użytkownik
Posty: 234
Rejestracja: 23 cze 2011, o 10:49
Płeć: Kobieta
Lokalizacja: lanckorona
Podziękował: 61 razy

Wykaż, że dla dowolnych liczb spełniona jest nierówność

Post autor: kamiolka28 » 13 sie 2011, o 10:30

Wykaż, że dla dowolnych liczb x, y, z spełniona jest nierówność
\(\displaystyle{ \left( x+y+z \right) \left( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right) \ge 9}\)
Ostatnio zmieniony 13 sie 2011, o 17:44 przez Lbubsazob, łącznie zmieniany 2 razy.
Powód: Skalowanie nawiasów.

miodzio1988.
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 6 lis 2009, o 21:43
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz

Wykaż, że dla dowolnych liczb spełniona jest nierówność

Post autor: miodzio1988. » 13 sie 2011, o 10:34

\(\displaystyle{ x+y+z \ge 3\sqrt[3]{xyz} \\ \frac{1}{x} +\frac{1}{y} +\frac{1}{z} \ge \frac{3}{\sqrt[3]{xyz}}}\)
mnożąc stronami otrzymasz szukaną nierówność.
Ostatnio zmieniony 13 sie 2011, o 17:31 przez Lbubsazob, łącznie zmieniany 1 raz.
Powód: Jedne klamry [latex][/latex] na całe wyrażenie.

Awatar użytkownika
Funktor
Użytkownik
Użytkownik
Posty: 482
Rejestracja: 21 gru 2009, o 15:18
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 2 razy
Pomógł: 63 razy

Wykaż, że dla dowolnych liczb spełniona jest nierówność

Post autor: Funktor » 13 sie 2011, o 10:39

Po wymnożeniu utrzymasz wyrażenie \(\displaystyle{ 3 + \frac{x}{y} + \frac{y}{x}+\frac{x}{z}+\frac{z}{x}+ \frac{y}{z} + \frac{z}{y}}\) teraz skorzystaj z nierówności że \(\displaystyle{ a+b \ge 2\sqrt{ab}}\)

ODPOWIEDZ