Wyznaczenie wzoru funkcji kwadratowej

Zagadnienia dot. funkcji kwadratowej. RÓWNANIA I NIERÓWNOŚCI kwadratowe i pierwiastkowe. Układy równań stopnia 2.
seba21007
Użytkownik
Użytkownik
Posty: 83
Rejestracja: 28 lut 2009, o 14:55
Płeć: Mężczyzna
Podziękował: 16 razy

Wyznaczenie wzoru funkcji kwadratowej

Post autor: seba21007 » 5 sie 2011, o 15:50

Witam
Wyznacz wzór funkcji, o której wiadomo, że przyjmuje wartości ujemne w przedziale \(\displaystyle{ (-1;4)}\) oraz zbiorem wartości jest przedział \(\displaystyle{ [-2;+ infty )}\)

Z treści zadania wynika, że

\(\displaystyle{ x _{1} =-1\\ x _{2} = 4\\ q=-2}\)

Można podstawić po wzór postaci iloczynowej

\(\displaystyle{ y=a(x-x _{1})(x-x_{2})\\ y=a(x+1)(x-4)}\)

I teraz zaczynają się schody ;D jak z tego zrobić \(\displaystyle{ a}\)
Można jakoś tak, że \(\displaystyle{ -2=a(x+1)(x-4)}\) ale to i tak mi nic nie daje bo nie znamy \(\displaystyle{ x}\) jedynie tylko wiem w jakim jest przedziale \(\displaystyle{ (-1,4)}\) ale nie bardzo wiem jak z tego skorzystać
Bardzo proszę o szybka pomoc.
Z góry Wielkie dzięki
Pozdrawiam
Ostatnio zmieniony 5 sie 2011, o 16:10 przez Chromosom, łącznie zmieniany 2 razy.
Powód: Nieczytelny zapis - brak LaTeX-a. Proszę zapoznać się z instrukcją: http://matematyka.pl/latex.htm .

kamil13151
Gość Specjalny
Gość Specjalny
Posty: 5019
Rejestracja: 28 wrz 2009, o 16:53
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 459 razy
Pomógł: 912 razy

Wyznaczenie wzoru funkcji kwadratowej

Post autor: kamil13151 » 5 sie 2011, o 15:59

\(\displaystyle{ [-2;+ infty )}\)
Co nam to daje? Jest to funkcja z ramiona do góry, czyli \(\displaystyle{ a>0}\) i wierzchołek znajduje się w punkcie \(\displaystyle{ y=-2}\). Można jeszcze zauważyć, że wierzchołek jest w połowie miejsc zerowych \(\displaystyle{ x=1,5}\).

seba21007
Użytkownik
Użytkownik
Posty: 83
Rejestracja: 28 lut 2009, o 14:55
Płeć: Mężczyzna
Podziękował: 16 razy

Wyznaczenie wzoru funkcji kwadratowej

Post autor: seba21007 » 5 sie 2011, o 16:09

Właśnie tego mi brakowało jakie jest "x" a skąd wiesz że wierzchołek jest w połowie miejsc zerowych ? tak jest zawsze przy funkcji kwadratowej ?

miodzio1988

Wyznaczenie wzoru funkcji kwadratowej

Post autor: miodzio1988 » 5 sie 2011, o 16:13

Tak jest zawsze

seba21007
Użytkownik
Użytkownik
Posty: 83
Rejestracja: 28 lut 2009, o 14:55
Płeć: Mężczyzna
Podziękował: 16 razy

Wyznaczenie wzoru funkcji kwadratowej

Post autor: seba21007 » 5 sie 2011, o 16:38

No tak ;D ale sie nie ogarnąłem ;d bo jakby był inaczej to by to nie była funkcja kwadratowa tylko już jakiś wielomian ;D I przecież szukając oś symetrii funkcji kwadratowej patrzy się na q ; p Jeszcze raz dziękuje

ODPOWIEDZ