[Teoria liczb] Dwa zadania z iloczynami.

Zadania z kółek matematycznych lub obozów przygotowujących do OM. Problemy z minionych olimpiad i konkursów matematycznych.
Regulamin forum
Wszystkie tematy znajdujące się w tym dziale powinny być tagowane tj. posiadać przedrostek postaci [Nierówności], [Planimetria], itp.. Temat może posiadać wiele różnych tagów. Nazwa tematu nie może składać się z samych tagów.
Gość Specjalny
Gość Specjalny
Posty: 9834
Rejestracja: 18 gru 2007, o 03:54
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 90 razy
Pomógł: 2629 razy

[Teoria liczb] Dwa zadania z iloczynami.

Post autor: » 6 lip 2011, o 18:19

Chyba nietrywialne, w sam raz na sezon ogórkowy ;).

Zadanie 1
Niech \(\displaystyle{ P_n= \prod_{k=1}^{n} k!}\). Wykazać, że dla dowolnego \(\displaystyle{ n\in\mathbb{Z}_{+}}\) liczba \(\displaystyle{ \frac{P_{2n}}{P_n^4}}\) jest całkowita.

Zadanie 2
Wykazać, że dla dowolnego \(\displaystyle{ n\in\mathbb{Z}_{+}}\) liczba
\(\displaystyle{ \frac{ \prod_{k=1}^{2n-1}k^{\min (k,2n-k)} }{ \prod_{k=1}^{n-1}(2k+1)^{2n-2k-1} }}\)
jest całkowitą potęgą dwójki.

Q.

TomciO
Użytkownik
Użytkownik
Posty: 289
Rejestracja: 16 paź 2004, o 23:38
Płeć: Mężczyzna
Lokalizacja: Kraków
Pomógł: 38 razy

[Teoria liczb] Dwa zadania z iloczynami.

Post autor: TomciO » 6 lip 2011, o 20:08

Zadanie 1
Ukryta treść:    

Gość Specjalny
Gość Specjalny
Posty: 9834
Rejestracja: 18 gru 2007, o 03:54
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 90 razy
Pomógł: 2629 razy

[Teoria liczb] Dwa zadania z iloczynami.

Post autor: » 6 lip 2011, o 21:23

Ładnie zredagowane.

Alternatywnym pomysłem jest wzmocnienie tezy do takiej, że całkowita jest liczba \(\displaystyle{ \frac{P_{2n}}{P_n^4\cdot (n+1)}}\) i zastosowanie indukcji. Po drodze warto wtedy skorzystać z tego, że \(\displaystyle{ \frac{1}{k+1} {2k \choose k}}\) (czyli liczba Catalana) jest całkowite.

Q.

ODPOWIEDZ