Strona 1 z 1

Równanie liniowe niejednorodne

: 4 lip 2011, o 18:09
autor: iXmerof
Witam, teraz jestem w trakcie poznawania równań liniowych jednorodnych, gdzie notatki okazały się strasznym chaosem i muszę posiłkować się samymi książkami co oznacza czarną magię dla mnie.

Zadanie ma treść:
Rozwiązać równanie:
\(\displaystyle{ e^{x ^{2} } y' +xy= 0}\)

Po przekształceniach doszedłem do całki:
\(\displaystyle{ \int_{}^{} \frac{1}{y} dy = - \int_{}^{} x \cdot e ^{-x ^{2} }}\)
Jej rozwiązaniem jest:
\(\displaystyle{ ln|y|= \frac{1}{2} e ^{-x ^{2} } + ln| C_{1} |}\)

W książce z tego miejsca nastąpił przeskok do postaci:
\(\displaystyle{ y=C_{1}e ^{-\frac{1}{2} x ^{2} }}\)
Wyjaśniając, że powstało to po skasowaniu logarytmów. Skok jest dla mnie szokujący wręcz, na podstawie jakich twierdzeń tego dokonano?

EDIT:
Em... lewa strona to proste przekształcenie, prawa to wzór co łącznie daje \(\displaystyle{ y=C_{1}e^{- \int_{}^{} p(x)}}\) , gdzie p(x) to wielomian przy y. Dlaczego sposób tłumaczenia matematyki wymyślono taki skomplikowany, że człowiek traci masę czasu nad zastanawianiem się nad czymś prozaicznym, a zastanawia się "co tu kurka jest napisane", myslałem, że tak tylko jest na polskim, a studia pokazały, że jednak niee... D

Równanie liniowe niejednorodne

: 5 lip 2011, o 00:37
autor: leonek74
Jest gdzieś w sigu jakiegoś usera napisane: "matematyk musi umieć myśleć, od liczenia są kalkulatory". Niezmiernie się cieszę, że nie jesteś z tych userów, którzy proszą o rozwiązanie zadania, ale jesteś KIMŚ, kto sprostał zadaniu i mam nadzieję, nauczył się czegoś. Zakładam, że jesteś w młodym wieku i teraz możesz pochwalić się dziewczynie, że masz takie trudne zagadnienia i, że to rozumiesz (nie mówiąc już o prawidłowym rozwiązywaniu zadań na egzaminie/kolokwium).

Równanie liniowe niejednorodne

: 5 lip 2011, o 10:32
autor: G.BEST7
\(\displaystyle{ ln|y|= \frac{1}{2}e^{-x^2}+ln|C_{1}|}\)
\(\displaystyle{ ln|y|=ln|e^{\frac{1}{2}e^{-x^2}}|+ln|C_{1}|}\)
\(\displaystyle{ ln|y|=ln|C_{1}e^{\frac{1}{2}e^{-x^2}}|}\)
\(\displaystyle{ y=C_{1}e^{\frac{1}{2}e^{-x^2}}}\)