Wartość gęstości rozkładu sumy zmiennych losowych

Definicja klasyczna. Prawdopodobieństwo warunkowe i całkowite. Zmienne losowe i ich parametry. Niezależność. Prawa wielkich liczb oraz centralne twierdzenia graniczne i ich zastosowania.
900217
Użytkownik
Użytkownik
Posty: 38
Rejestracja: 8 sty 2011, o 15:52
Płeć: Mężczyzna
Lokalizacja: Poznań

Wartość gęstości rozkładu sumy zmiennych losowych

Post autor: 900217 » 2 lip 2011, o 17:40

Niech X i Y będą niezależne. Załóżmy, że Y ma rozkład jednostajny na [0,1], X ma rozkład dwumianowy \(\displaystyle{ b(k,4, \frac{1}{3})}\)
Policz wartość gęstości rozkładu X+Y \(\displaystyle{ f_{X+Y}( \frac{5}{2} )}\) . Podaj przybliżenie dziesiętne.

Moje rozwiązanie

\(\displaystyle{ f_{Y}(y)=1 \cdot\mathcal{I} _{(0,1)}(y)}\)
\(\displaystyle{ \mathcal{I}-indykator \ zbioru}\)

\(\displaystyle{ \sum_{x=0}^{4} 1\cdot \mathcal{I} _{(0,1)}(z-x) {4 \choose x} \frac{1}{3} ^{x} \frac{2}{3} ^{4-x}=1\cdot {4 \choose 2}\cdot \frac{1}{3} ^{2}\cdot \frac{2}{3} ^{2}=...}\)

Czy jest to poprawny sposób rozwiązania?
Ostatnio zmieniony 2 lip 2011, o 23:48 przez luka52, łącznie zmieniany 1 raz.
Powód: Nie stosuj wzorów matematycznych w nazwie tematu.

Lider Artur
Użytkownik
Użytkownik
Posty: 692
Rejestracja: 19 cze 2011, o 23:29
Płeć: Mężczyzna
Lokalizacja: Warszawa
Pomógł: 107 razy

Wartość gęstości rozkładu sumy zmiennych losowych

Post autor: Lider Artur » 3 lip 2011, o 00:43

W Twoim sposobie rozwiązania nigdzie nie pojawia się wartość \(\displaystyle{ \frac{5}{2}}\)
Chodzi o znalezienie gęstości rozkładu mieszanego, czy dokładniej wartości w danym punkcie?

900217
Użytkownik
Użytkownik
Posty: 38
Rejestracja: 8 sty 2011, o 15:52
Płeć: Mężczyzna
Lokalizacja: Poznań

Wartość gęstości rozkładu sumy zmiennych losowych

Post autor: 900217 » 3 lip 2011, o 08:45

Chodzi o wartość gęstości w tym punkcie. A co do wartości \(\displaystyle{ \frac{5}{2}}\) to używam jej tu
\(\displaystyle{ \sum_{x=1}^{4} 1\cdot\mathcal{I}_{(0,1)}( \frac{5}{2} -x)\cdot...}\) i z tego wychodzi, że jedyny x w którym indykator się nie zeruje (nie wiem czy tak można powiedzieć) to 2, dlatego dalej liczę już tylko dla dwójki..

Lider Artur
Użytkownik
Użytkownik
Posty: 692
Rejestracja: 19 cze 2011, o 23:29
Płeć: Mężczyzna
Lokalizacja: Warszawa
Pomógł: 107 razy

Wartość gęstości rozkładu sumy zmiennych losowych

Post autor: Lider Artur » 3 lip 2011, o 09:59

Mnie nie przekonuję. Mamy do czynienia z rozkładem mieszanym, więc zapisywać gęstość jak dla rozkładu dyskretnego nie jest najlepszym sposobem.
Ja bym próbował wyznaczyć dystrybuantę zmiennej losowej \(\displaystyle{ X+Y}\) i na jej podstawie odpowiedzieć na Twoje pytanie.

900217
Użytkownik
Użytkownik
Posty: 38
Rejestracja: 8 sty 2011, o 15:52
Płeć: Mężczyzna
Lokalizacja: Poznań

Wartość gęstości rozkładu sumy zmiennych losowych

Post autor: 900217 » 3 lip 2011, o 12:36

Niestety nie wiem jak to zrobić... Może mi jakoś podpowiesz jak zacząć?

Lider Artur
Użytkownik
Użytkownik
Posty: 692
Rejestracja: 19 cze 2011, o 23:29
Płeć: Mężczyzna
Lokalizacja: Warszawa
Pomógł: 107 razy

Wartość gęstości rozkładu sumy zmiennych losowych

Post autor: Lider Artur » 3 lip 2011, o 12:46

\(\displaystyle{ P(X+Y \le t)= \sum_{k=0}^{4} P(X+Y \le t|X=k)=\sum_{k=0}^{4} P(Y \le t-k|X=k)=\sum_{k=0}^{4} P(Y \le t-k)}\)

900217
Użytkownik
Użytkownik
Posty: 38
Rejestracja: 8 sty 2011, o 15:52
Płeć: Mężczyzna
Lokalizacja: Poznań

Wartość gęstości rozkładu sumy zmiennych losowych

Post autor: 900217 » 3 lip 2011, o 13:04

\(\displaystyle{ = \sum_{k=0}^{4} F _{Y} (t-k)=\sum_{k=0}^{4} \frac{t-k}{1} \matcal{I} _{(0,1)} (t-k)= _{t= \frac{5}{2} } = \frac{1}{2}}\) ???

Lider Artur
Użytkownik
Użytkownik
Posty: 692
Rejestracja: 19 cze 2011, o 23:29
Płeć: Mężczyzna
Lokalizacja: Warszawa
Pomógł: 107 razy

Wartość gęstości rozkładu sumy zmiennych losowych

Post autor: Lider Artur » 3 lip 2011, o 20:13

Przepraszam, pomyliłem się. Powinno być:
\(\displaystyle{ P(X+Y \le t)= \sum_{k=0}^{4} P(X+Y \le t, X=k)=\sum_{k=0}^{4} P(Y \le t-X|X=k)P(X=k)=\sum_{k=0}^{4} P(Y \le t-k)P(X=k)}\)

900217
Użytkownik
Użytkownik
Posty: 38
Rejestracja: 8 sty 2011, o 15:52
Płeć: Mężczyzna
Lokalizacja: Poznań

Wartość gęstości rozkładu sumy zmiennych losowych

Post autor: 900217 » 3 lip 2011, o 22:17

Czyli tak jak było na początku?

ODPOWIEDZ