Czy element jest elementem nierozkładalnym pierścienia?

Grupy, pierścienie, ciała, rozkładalność, klasyczne struktury algebraiczne...
elomelo320
Użytkownik
Użytkownik
Posty: 15
Rejestracja: 26 cze 2011, o 13:27
Płeć: Kobieta
Lokalizacja: Pln

Czy element jest elementem nierozkładalnym pierścienia?

Post autor: elomelo320 » 26 cze 2011, o 13:34

czy 9i\(\displaystyle{ \sqrt{2}}\) należy do Z\(\displaystyle{ \left[ i \sqrt{2} \right]}\) jest elementem nierozkładalnym pierścienia Z\(\displaystyle{ \left[ i \sqrt{2} \right]}\) .Jeśli nie zaleźć jego dzielniki i rozkład na elementy nierozkładalne.

Awatar użytkownika
Natasha
Użytkownik
Użytkownik
Posty: 986
Rejestracja: 9 lis 2008, o 15:08
Płeć: Kobieta
Podziękował: 97 razy
Pomógł: 167 razy

Czy element jest elementem nierozkładalnym pierścienia?

Post autor: Natasha » 26 cze 2011, o 16:36

Szukamy \(\displaystyle{ x=a+bi \sqrt{2}}\) oraz \(\displaystyle{ y=c+di\sqrt{2}}\), \(\displaystyle{ x,y \in Z\left[ i\sqrt{2}\right]}\), \(\displaystyle{ x,y}\) nie są elementami odwracalnymi w \(\displaystyle{ Z\left[ i\sqrt{2}\right]}\), czyli ani \(\displaystyle{ 1}\), ani \(\displaystyle{ -1}\), takich, że \(\displaystyle{ x\cdot y=9i\sqrt{2}}\), czyli
\(\displaystyle{ (a+bi \sqrt{2})(c+di \sqrt{2})=9i\sqrt{2}}\)

Podnosimy moduły do kwadratu i wychodzi: \(\displaystyle{ (a ^{2}+2b ^{2})(c ^{2}+2d ^{2})=162}\)
Szukamy dzielników naturalnych liczby \(\displaystyle{ 162}\) i po kolei rozpatrujemy przypadki dla każdego z nich. Czyli innymi słowy szukamy dzielników liczby \(\displaystyle{ 9i\sqrt{2}}\), które nie są elementami odwracalnymi w podanym pierścieniu. Jeśli \(\displaystyle{ 9i\sqrt{2}}\) da się zapisać jako iloczyn dwóch elementów nieodwracalnych, to jest elementem rozkładalnym, w przeciwnym wypadku nie.-- 26 czerwca 2011, 16:37 --PS \(\displaystyle{ a,b,c,d \in Z}\).

elomelo320
Użytkownik
Użytkownik
Posty: 15
Rejestracja: 26 cze 2011, o 13:27
Płeć: Kobieta
Lokalizacja: Pln

Czy element jest elementem nierozkładalnym pierścienia?

Post autor: elomelo320 » 26 cze 2011, o 18:16

Dziękuję ślicznie;)!

ODPOWIEDZ