Wartość oczekiwana E(p)

Definicja klasyczna. Prawdopodobieństwo warunkowe i całkowite. Zmienne losowe i ich parametry. Niezależność. Prawa wielkich liczb oraz centralne twierdzenia graniczne i ich zastosowania.
Amino2009
Użytkownik
Użytkownik
Posty: 50
Rejestracja: 2 wrz 2009, o 17:35
Płeć: Kobieta

Wartość oczekiwana E(p)

Post autor: Amino2009 » 25 cze 2011, o 11:27

Przy rzucie specjalnie spreparowaną kostką do gry, szóstka wypada z prawdp. p , a liczby 1,2,3,4,5 wypadają z jednakowymi prawdopodobieństwami. Niech E(p) będzie wartośćią oczekwianą liczby wyrzuoconych oczek w pojedynczym rzucie. Czy wtedy:
a) E(0.3) \(\displaystyle{ \le}\) 3,879
b) E(0.1)\(\displaystyle{ \le}\) 3,25
c) E(0.4)\(\displaystyle{ \le}\) 4,25
d)E(0.2)\(\displaystyle{ \le}\) 3,6

Nie wiem czy dobrze myślę, np do podpunktu a) p=0,3 więc prawodpobieństwo wyrzucenia jednej z liczb 1 2 3 4 5 wynosi 0,7 podzielone przez 5 więc wartość oczekiwana to 6*0.3+15*\(\displaystyle{ \frac{7}{50}}\).
Wynik nie zgadza mi się z odpowiedzią... Proszę o pomoc

silvaran
Użytkownik
Użytkownik
Posty: 1300
Rejestracja: 6 sty 2009, o 20:22
Płeć: Mężczyzna
Lokalizacja: Skierniewice/Warszawa
Podziękował: 60 razy
Pomógł: 123 razy

Wartość oczekiwana E(p)

Post autor: silvaran » 25 cze 2011, o 11:34

Ogólnie wartość oczekiwana będzie:
\(\displaystyle{ E(p)= \frac{1-p}{5}(1+2+3+4+5)+6\cdot p=3(1-p)+6p=3+3p}\)

Jak dla mnie to wygląda, że pasuje odpowiedź c i d. Czy to jest jakiś test wielokrotnego wyboru czy co?

Amino2009
Użytkownik
Użytkownik
Posty: 50
Rejestracja: 2 wrz 2009, o 17:35
Płeć: Kobieta

Wartość oczekiwana E(p)

Post autor: Amino2009 » 25 cze 2011, o 11:45

Dobrze mówisz:p nie umiem mnożyć ułamków i tak to póżniej jest hehe:p tak to jest test wielokrotnego wyboru

ODPOWIEDZ