Mediana w szeregu rozdzielczym z nie równymi przedziałami

Procesy stochastyczne. Sposoby racjonalizowania wielkich ilości informacji. Matematyka w naukach społecznych.
styxer
Użytkownik
Użytkownik
Posty: 1
Rejestracja: 24 cze 2011, o 21:01
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 1 raz

Mediana w szeregu rozdzielczym z nie równymi przedziałami

Post autor: styxer » 24 cze 2011, o 21:33

\(\displaystyle{ \begin{tabular}{|c|c|}wiek & ilość osób\\ \hline
17 - 25&25\\ \hline
25 - 35&20 \\ \hline
35 - 45&55\\ \hline
45 - 55&25 \\ \hline
55 - 65&25\\ \hline \end{tabular}}\)

jak dla takiego rozkładu obliczyć medianę i dominantę, pierwszym przedziale jest inna rozpiętość niż w pozostałych przedziałach co z tym zrobić?
Ostatnio zmieniony 24 cze 2011, o 22:14 przez Crizz, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości. Dane tabelaryczne proszę umieszczać w odpowiednich strukturach LaTeXa.

Crizz
Gość Specjalny
Gość Specjalny
Posty: 4094
Rejestracja: 10 lut 2008, o 15:31
Płeć: Mężczyzna
Lokalizacja: Łódź
Podziękował: 12 razy
Pomógł: 805 razy

Mediana w szeregu rozdzielczym z nie równymi przedziałami

Post autor: Crizz » 24 cze 2011, o 22:17

Co do mediany to nie ma znaczenia, znajdź po prostu przedział, w którym się ona znajdzie ("skumuluj" ilość osób) i licz normalnie. Z dominantą jest problem, jeśli przedział, który ją zawiera, oraz dwa sąsiadujące przedziały nie mają tej samej rozpiętości, ale tu wszystko jest OK.

Lider Artur
Użytkownik
Użytkownik
Posty: 692
Rejestracja: 19 cze 2011, o 23:29
Płeć: Mężczyzna
Lokalizacja: Warszawa
Pomógł: 107 razy

Mediana w szeregu rozdzielczym z nie równymi przedziałami

Post autor: Lider Artur » 24 cze 2011, o 23:53

\(\displaystyle{ Med=x^{L}_{med}+\frac{b}{n_{med}}\left[\frac{n}{2}- \sum_{j=1}^{i_{med}-1}n_{j}\right]}\)
gdzie:
\(\displaystyle{ x^{L}_{med}}\) - lewy kraniec klasy, w którym znajduję się mediana
\(\displaystyle{ b}\) - szerokość klasy
\(\displaystyle{ n_{med}}\) - liczność klasy

ODPOWIEDZ