Kręt - prędkość kątowa jako funkcja

majkelinho
Użytkownik
Użytkownik
Posty: 1
Rejestracja: 22 cze 2011, o 19:56
Płeć: Mężczyzna
Lokalizacja: wro
Podziękował: 1 raz

Kręt - prędkość kątowa jako funkcja

Post autor: majkelinho » 22 cze 2011, o 20:10

Witam,
mam spory kłopot z następującym zadaniem:
Wzdłuż rurki o momencie bezwładności I względem AB porusza się punkt C mający masę m i prędkość v. Układ jest wprawiany w ruch obrotowy przez stały moment M.
Należy odszukać \(\displaystyle{ \omega}\) jako funkcję \(\displaystyle{ x}\) odległości punktu C od osi AB.
Warunki: \(\displaystyle{ \omega(0)=0 \ \ , \ \ x(0)=0}\) ,

obrazek: http://imageshack.us/photo/my-images/809/zadv.jpg/

wynik, wg. książki, powinien wyjść: \(\displaystyle{ \omega= \frac{M}{I+mx^{2}} \cdot \frac{x- x_{0} }{v} }}\)

Rozumiem, że taki wynik wyjdzie po porównaniu krętów... Ale właśsnie, w jakich momentach? Próbowałem policzyć w rozne sposoby ale nijak nie chce zaskoczyć. Proszę o pomoc/wskazówki.
Ostatnio zmieniony 22 cze 2011, o 20:15 przez ares41, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości. Symbol mnożenia to \cdot

kruszewski
Użytkownik
Użytkownik
Posty: 6660
Rejestracja: 7 gru 2010, o 16:50
Płeć: Mężczyzna
Lokalizacja: Staszów
Podziękował: 37 razy
Pomógł: 1084 razy

Kręt - prędkość kątowa jako funkcja

Post autor: kruszewski » 22 cze 2011, o 22:02

Moment bezwładności rurki i kulki wzgledem osi AB w chwili t jest równy :
\(\displaystyle{ I _{r} +m \cdot x ^{2}}\)
Moment kręcący równy jest :
\(\displaystyle{ M=(I _{r} +m \cdot x ^{2} ) \cdot d \omega /dt}\)
Wyrażając \(\displaystyle{ \frac{d\omega}{dt} = \frac{d\omega}{ \frac{dx}{v} }}\)
I przekształcając mamy:
\(\displaystyle{ d\omega = \frac{M}{(I _{r} + mx ^{2} ) } \cdot \frac{dx}{v}}\)
Całkując i uwzględniając warunki początkowe mamy jak w odpowiedzi zadania.
W.Kr.

ODPOWIEDZ