zbieżność szeregu

Własności ciągów i zbieżność, obliczanie granic. Twierdzenia o zbieżności.
21mat
Użytkownik
Użytkownik
Posty: 319
Rejestracja: 23 mar 2011, o 09:58
Płeć: Mężczyzna

zbieżność szeregu

Post autor: 21mat » 22 cze 2011, o 09:57

\(\displaystyle{ f(x)=sgn(x)}\)
Czy \(\displaystyle{ \frac{4}{ \pi } \sum_{n=1}^{ \infty } \frac{\sin(nx)}{n}}\) jest na przedziale \(\displaystyle{ \left( - \pi , \pi \right)}\) zbieżny do f: a) punktowo, b) jednostajnie?
Jak to rozwiązać?
Ostatnio zmieniony 22 cze 2011, o 10:20 przez Lbubsazob, łącznie zmieniany 1 raz.
Powód: \sin x

pipol

zbieżność szeregu

Post autor: pipol » 22 cze 2011, o 10:05

jak definiujesz funkcję \(\displaystyle{ sgn}\) ?

21mat
Użytkownik
Użytkownik
Posty: 319
Rejestracja: 23 mar 2011, o 09:58
Płeć: Mężczyzna

zbieżność szeregu

Post autor: 21mat » 22 cze 2011, o 10:09

\(\displaystyle{ f(x)= \begin{cases} -1, \ \text{dla} \ - \pi <x<0 \\ 0, \ \text{dla} \ x=0 \\ 1, \ \text{dla} \ 0<x< \pi \end{cases}}\)
Ostatnio zmieniony 22 cze 2011, o 10:21 przez Lbubsazob, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.

pipol

zbieżność szeregu

Post autor: pipol » 22 cze 2011, o 10:14

jest zbieżny punktowo (bo funkcja \(\displaystyle{ signum}\) jest przedziałami klsy \(\displaystyle{ C_2}\) ) ale nie jest zbieżny jednostajnie (bo ten szereg to ciąg funkcji ciągłych a jego granica nie jest funkcją ciągłą)

21mat
Użytkownik
Użytkownik
Posty: 319
Rejestracja: 23 mar 2011, o 09:58
Płeć: Mężczyzna

zbieżność szeregu

Post autor: 21mat » 22 cze 2011, o 10:22

Co to znaczy że funkcja jest przedziałami klasy C2?

pipol

zbieżność szeregu

Post autor: pipol » 22 cze 2011, o 10:32

To znaczy, że istnieje skończona liczba punktów \(\displaystyle{ a_1 , a_2 ,...,a_n \in \mathbb{R}}\) takich, zę dla jej dziedziny \(\displaystyle{ \mathbb{D}}\) zajdzie równość \(\displaystyle{ \mathbb{D} \setminus \{a_1 ,a_2 ,...,a_n \}= \bigcup_{k=1}^{p} (c_k , d_k )}\) oraz funkcja jest klasy \(\displaystyle{ C_2}\) na każdym przedziale \(\displaystyle{ (c_k , d_k )}\) dla \(\displaystyle{ k=1,2,...,p}\)

ODPOWIEDZ